Palmitoylation enhances the stability of porcine epidemic diarrhea virus spike protein by antagonizing its degradation via chaperone-mediated autophagy to facilitate viral proliferation.

棕榈酰化通过拮抗分子伴侣介导的自噬作用降解猪流行性腹泻病毒刺突蛋白,从而增强其稳定性,促进病毒增殖

阅读:3
作者:Qian Qisheng, Zhao Shuang-Shuang, Yang Lei, Xing Guangxu, Chen Yumei, Liang Chao, Wang Haili, Li Rui, Qiao Songlin, Wang Aiping, Zhang Gaiping
Porcine epidemic diarrhea (PED) is a highly pathogenic and infectious intestinal disease caused by the PED virus (PEDV) and has inflicted substantial economic losses on the global swine industry. Therefore, it is imperative to explore appropriate targets to restrain PEDV infection. PEDV spike (S) protein is crucial for viral infection and is regarded as an ideal target for the development of vaccines and antiviral therapeutics. Palmitoylation is a significant post-translational modification implicated in multiple viral replication cycles. Despite the fact that palmitoylation of certain coronavirus S proteins has been reported, the specific biological significance and underlying molecular mechanisms of PEDV S protein palmitoylation have not been fully defined. In the present study, we uncover that palmitoylation enhances the stability of PEDV S protein to promote viral proliferation. Mechanistically, we identify that a cysteine-rich region within the cytoplasmic tail of PEDV S protein is palmitoylated by the zinc finger Asp-His-His-Cys domain palmitoyltransferase 5 (ZDHHC5). We further illustrate that palmitoylation prevents the recognition of Lys-Phe-Glu-Arg-Gln (KFERQ)-like motif in PEDV S protein by heat shock cognate protein of 70 kDa (HSC70), thereby antagonizing its degradation via chaperone-mediated autophagy (CMA). Collectively, our findings underscore the importance of palmitoylation for PEDV pathogenesis and provide prospective targets for the development of antiviral interventions.IMPORTANCEPEDV poses a serious threat to pig farming worldwide. As a consequence, a comprehensive investigation of PEDV pathogenesis is of great significance for the prevention and control of the virus. Here, we verify that ZDHHC5-mediated palmitoylation of PEDV S protein enhances its stability through impeding recognition by HSC70 and antagonizing degradation via CMA to facilitate viral propagation. Our findings highlight the important role of palmitoylation in PEDV proliferation and support palmitoylation as a promising target for the development of antiviral strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。