Ferroptosis plays a crucial role in the secondary pathophysiological damage to brain tissue surrounding hematomas after intracerebral hemorrhage (ICH). While platelet factor 4 (PF4) is known to promote regeneration following peripheral nerve injury, its role in brain tissue repair after cerebral hemorrhage remains unclear. In this study, Hemin-induced PC12 cells were treated with various inhibitors and assessed for viability, oxidative stress, and ferroptosis using a combination of assays, including CCK-8 (Cell Counting Kit-8), EdU (5-Ethynyl-2'-deoxyuridine), flow cytometry, and immunofluorescence. ICH cells were also treated with recombinant PF4 (Rm-PF4) and a CXCR3 antagonist (AMG487) to investigate the mechanism by which Rm-PF4 influences Hemin-induced PC12 cell injury and inflammation. Subsequently, ICH mouse models were established via collagenase injection. Neurological function in these mice was evaluated using the Cylinder and Corner tests. Histopathological damage to brain tissue was analyzed through HE, TUNEL, and Nissl staining, as well as immunohistochemistry, to further explore the role of Rm-PF4 in controlling neuroinflammation in vivo. Results showed that Rm-PF4 inhibited Hemin-mediated ferroptosis-induced PC12 cell damage and inflammation by activating the CXCR3/AKT1/SLC7A11 signaling pathway. Blocking the CXCR3/AKT1/SLC7A11 pathway partially reversed PF4's protective effects on Hemin-induced PC12 cells.In ICH mice, pro-inflammatory marker CD16 (3rd day) and anti-inflammatory marker Arg1 (7th day) were significantly decreased and increased, respectively (p<0.05). IL-6, TNF-α, and IL-1β levels were down-regulated in brain tissues after Rm-PF4 injection, which was significantly reversed by AMG487. PF4 inhibits ferroptosis after ICH reduced PC12 cell damage and the inflammatory response via activating the CXCR3/AKT1/SLC7A11 pathway.
PF4 inhibits ferroptosis-mediated intracerebral hemorrhage through modulating the CXCR3/AKT1/SLC7A11 signaling pathway.
PF4 通过调节 CXCR3/AKT1/SLC7A11 信号通路抑制铁死亡介导的脑出血
阅读:8
作者:Hu Na, Zhang Guohong, An Liping, Wang Wei, An Ran, Li Yunfeng
| 期刊: | Biomolecules Biomedicine | 影响因子: | 2.200 |
| 时间: | 2025 | 起止号: | 2025 Jan 30; 25(3):563-577 |
| doi: | 10.17305/bb.2024.11283 | 靶点: | AKT1 |
| 研究方向: | 信号转导 | 信号通路: | PI3K/Akt |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
