Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear. Herein, we have exploited a novel carbonyl sulfide (COS)/hydrogen sulfide (H(2)S)-donor hybrid PDE10A inhibitor called COS-2080 with a well-defined mechanism of H(2)S-releasing action. It exhibited highly potent inhibitory activity against PDE10A and excellent PDE subfamily selectivity. Moreover, COS-2080 demonstrated significant antifibrotic effects by inhibiting cell proliferation and mitigating fibroblast-to-myofibroblast transition (FMT). A dry powder inhalation formulation called COS-2080-DPI has been developed using the ultrasonic spray freeze drying (USFD) technique, demonstrating significant antifibrotic efficacy in mice with bleomycin-induced PF at a dosage approximately 600 times lower than pirfenidone. This remarkable antifibrotic efficacy of COS-2080 on TGF-β1-induced FMT could be primarily attributed to its inhibition of the Smad2/Smad3 phosphorylation. Moreover, COS-2080 effectively attenuated fibrosis in MRC-5 cells by activating the cAMP/protein kinase A (PKA)/CREB pathway and potentially increasing levels of p53 protein. Our findings suggest that effective inhibition of PDE10A potentially confers a protective effect on FMT in PF by impeding TGF-β signaling and activating the cAMP/PKA/CREB/p53 axis.
Inhalable Carbonyl Sulfide Donor-Hybridized Selective Phosphodiesterase 10A Inhibitor for Treating Idiopathic Pulmonary Fibrosis by Inhibiting Tumor Growth Factor-β Signaling and Activating the cAMP/Protein Kinase A/cAMP Response Element-Binding Protein (CREB)/p53 Axis.
吸入式羰基硫供体杂交选择性磷酸二酯酶 10A 抑制剂,通过抑制肿瘤生长因子-β 信号传导和激活 cAMP/蛋白激酶 A/cAMP 反应元件结合蛋白 (CREB)/p53 轴治疗特发性肺纤维化
阅读:3
作者:Wang Quan, Liu Xinyue, Yuan Han, Zhang Fengcai, Wu Jiafei, Yang Dongjing, Qian Jiang, Huang Yi-You, Chai Guihong, Luo Hai-Bin, Guo Lei
| 期刊: | ACS Pharmacology and Translational Science | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2024 Dec 28; 8(1):256-269 |
| doi: | 10.1021/acsptsci.4c00671 | 靶点: | P53 |
| 研究方向: | 信号转导、肿瘤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
