Triple-negative breast cancer (TNBC) is resistant to most antitumor treatments, leaving chemotherapy as the primary option. Although doxorubicin (Dox) in combination with other therapies is promising for TNBC management, the combined effect is still compromised by the dose-limiting toxicities of Dox. Here, we developed a chemotherapeutic drug scavenger (CDS) by encapsulating GC-rich DNA-preferred binding targets of Dox-within an erythrocyte membrane functionalized with a normal tissue-targeting (NTT) peptide. Mimicking the structure of the cell nucleus, CDS selectively absorbs and neutralizes Dox in susceptible normal organs while sparing tumor tissues. This targeted detoxification allows for safe escalation of the Dox dose to 15Â mg/kg, three times the standard 5Â mg/kg, without observable toxicity. Such a high Dox dose enabled by CDS pretreatment significantly inhibited the post-operative residual/metastasized 4T1 tumor growth, regardless of the early or later stages of the tumor. Also, delivery of a high dose of Dox into the 4T1 tumor could profoundly increase the G2/M arrest, facilitating the combination therapy with a low-powered radiation of 2Â Gy. Further, tumor exposure to high Dox amounts could convert the 4T1 tumor microenvironment from 'cold' to 'hot', leading to improved infiltration of immune cells, including T cells, dendritic cells, and macrophages. Overall, this study demonstrates how the safe injection of high amounts of Dox enabled by CDS detoxification could augment and extend Dox's functionality combined with surgery, radiotherapy, and cell therapy for TNBC treatment.
Chemotherapeutic drug scavenger-based combination therapy toward treating triple-negative breast cancer.
以化疗药物清除剂为基础的联合疗法治疗三阴性乳腺癌
阅读:6
作者:Yin Qingqing, Zhong Yutong, Chen Mengchun, Mao Weian, Yang Yuan, Li Li, Tian Dongyan, Liu Shuangshuang, Chen Ying, Quan Jiale, Li Shiyu, Zhuge Deli, Zhang Xufei, Wang Ledan, Wang Fang, Chen Yiming, Lu Xiaosheng, Lin Xiaoji, Chen Yijie, Yan Linzhi
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 1; 23(1):473 |
| doi: | 10.1186/s12951-025-03571-z | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
