Evenly Distributed Microporous Structure and E7 Peptide Functionalization Synergistically Accelerate Osteogenesis and Angiogenesis in Engineered Periosteum.

均匀分布的微孔结构和 E7 肽功能化协同加速工程化骨膜的成骨和血管生成

阅读:7
作者:Li Qihong, Li Chen, Yan Jun, Zhang Chunli, Jiang Yu, Hu Xiantong, Han Liwei, Li Li, Wang Peng, Zhao Lingzhou, Zhao Yantao
Repairing large bone defects remains a significant clinical challenge. Stem cell is of great importance in bone regeneration, and periosteum is rich in periosteal stem cell, which has a great influence on repairing bone defects. Bioengineered periosteum with excellent biocompatibility and stem cell homing capabilities to promote bone regeneration is of great clinical significance. The E7 peptide (EPLQLKM), which exhibits a specific affinity for mesenchymal stem cells (MSCs), is beneficial for modulating cellular functions. In this study, a unique microporous structured carboxymethyl chitosan/sodium alginate membrane with a proper mass ratio is developed by the addition of Poloxam 407 (P407), which is then functionalized with the E7 affinitive peptide. This membrane, characterized by its microporous structure and E7 peptide functionalization (CSSA/P/E), not only demonstrated favorable mechanical properties, enhanced hydrophilicity, satisfactory biodegradation profile, and excellent biocompatibility, but also synergistically enhanced MSCs recruitment. It is found to promote the proliferation, spreading, and osteogenic differentiation of MSCs in vitro and to accelerate early periosteal regeneration, bone matrix deposition, and vascularization in vivo, leading to effective regeneration of critical-sized bone defects. Overall, this study presents a robust, cell and growth factor-free strategy for bioengineering periosteum, offering a potential solution for the challenging large size bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。