The modified vaccinia virus Ankara (MVA) is approved for use as a smallpox and monkeypox virus vaccine and was also designed as a popular recombinant viral vector for vaccine development and gene therapy. However, the extensive genomes of poxviruses present a significant challenge for the development of recombinant viral vaccines; therefore, it is essential to establish a user-friendly in vitro reverse genetic system. We systematically assembled the 180-kb MVA genome into a five-plasmid system, facilitating one-step packaging of the MVA virus. The MVA rescued using this system exhibited similar virological characteristics, including host cell tropism, growth kinetics, plaque size, and viral particles, comparable to those of wild-type MVA. Immunization with rescued MVA intramuscularly or subcutaneously triggered robust-specific immune responses and conferred protection against lethal attacks by the ectromelia virus in mice. We also developed a recombinant MVA-Luc-eGFP virus, which served as a tool for screening antiviral compounds against poxviruses. The synthetic MVA system efficiently generates recombinant vaccines with robust immune responses. These findings provide a novel and fast method for engineering large viral genomes with more specialized structures and lay a foundation for the advancement of more rapid and effective viral vector vaccines.
Design and construction of a fast synthetic modified vaccinia virus Ankara reverse genetics system for advancing vaccine development.
设计和构建快速合成改良痘苗病毒安卡拉反向遗传学系统,以推进疫苗开发
阅读:3
作者:Gao Zhiqiang, Wang Busen, Liu Tianyu, Zhao Zhenghao, Xu Jinghan, Zhao Xiaofan, Zhang Zhe, Jia Zuyuan, Yang Yilong, Wu Shipo, Chen Wei, Hou Lihua
| 期刊: | Frontiers in Microbiology | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 25; 16:1572706 |
| doi: | 10.3389/fmicb.2025.1572706 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
