Esculetin facilitates post-stroke rehabilitation by inhibiting CKLF1-mediated neutrophil infiltration.

七叶内酯通过抑制 CKLF1 介导的中性粒细胞浸润来促进中风后康复

阅读:3
作者:He Jia-Qi, Yuan Ruo-Lan, Jiang Yu-Tong, Peng Ye, Ye Jun-Rui, Wang Sha-Sha, Li Li-Qing, Ruan Yuan, Li Pei-Yi, Yan Xu, He Wen-Bin, Li Gang, Chu Shi-Feng, Zhang Zhao, Chen Nai-Hong
Esculetin (ESC) is a coumarin-derived phytochemical prevalent in traditional Chinese medicine that exhibits anti-acute ischemic stroke activities. Our previous studies demonstrate that CKLF1 is a potential anti-stroke target for coumarin-derived compound. In this study we investigated whether CKLF1 was involved in the neuroprotective effects of ESC against photothrombotic stroke in mice. The mice were treated with ESC (20, 40 or 80 mg·kg(-1)·d(-1), i.g.) for two weeks. The therapeutic effect of ESC was assessed using MRI, neurological function evaluation, and a range of behavioral tests on D1, 3, 7 and 14 of ESC administration. We showed that oral administration of ESC dose-dependently reduced the cerebral infarction volume within one week after stroke, improved behavioral performance, and alleviated neuropathological damage within two weeks. Functional MRI revealed that ESC significantly enhanced the abnormal low-frequency fluctuation (ALFF) value of the motor cortex and promoted functional connectivity between the supplementary motor area (SMA) and multiple brain regions. We demonstrated that ESC significantly reduced the protein levels of CKLF1 and CCR5, as well as the CKLF1/CCR5 protein complex in the peri-infarcted area. We showed that ESC (0.1-10 μM) dose-dependently blocked CKLF1-induced chemotactic movement of neutrophils in the Transwell assay, reducing the interaction of CKLF1/CCR5 on the surface of neutrophils, thereby reducing neutrophil infiltration, and decreasing the expression of ICAM-1, VCAM-1 and MMP-9 in the peri-infarct tissue. Knockout of CKLF1 reduced brain infarction volume and motor dysfunction after stroke but also negated the anti-stroke efficacy and neutrophil infiltration of ESC. These results suggest that the efficacy of ESC in promoting post-stroke neural repair depends on its inhibition on CKLF1-mediated neutrophil infiltration, which offering novel perspectives for elucidating the therapeutic properties of coumarins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。