Effects of Dietary Fiber Fermentation and Protein Digestion Properties on Growth Performance and Microbial Metabolites in Weaned Pigs.

膳食纤维发酵和蛋白质消化特性对断奶仔猪生长性能和微生物代谢物的影响

阅读:4
作者:Huang Jingyi, Sun Zhiqiang, Zhu Qi, Zhang Fudong, Lai Changhua, Zhao Jinbiao
Dietary nutrient digestion and utilization patterns influence pig performance and intestinal health. This study aimed to evaluate the effects of protein digestion and fiber fermentation speed among different feed ingredients on growth performance and fecal short-chain fatty acid (SCFA) concentrations in weaned pigs. A total of 192 weaned pigs (Duroc × Landrace × Yorkshire [6.87 ± 0.14 kg]) were selected and randomly divided into four dietary groups: fast-digesting protein with fast-fermenting fiber, fast-digesting protein with slow-fermenting fiber, slow-digesting protein with fast-fermenting fiber, and slow-digesting protein with slow-fermenting fiber. The results showed that cottonseed and wheat protein powders exhibited faster protein digestion than potato protein powder (p < 0.05). In vitro microbial fermentation of hawthorn powder and orange pomace resulted in greater and faster gas production and SCFA concentrations than sugarcane bagasse (p < 0.05). Orange pomace increased the abundance of Klebsiella and Escherichia-Shigella, whereas sugarcane bagasse increased the abundance of Rikenellaceae_RC9_gut_group and norank_f__Muribaculaceae. In addition, the fast-fermentation fiber tended to increase the daily weight gain and feed intake of piglets (p < 0.10), and the slow-fermentation fiber significantly reduced diarrhea incidence in pigs (p < 0.05). Fast fermentation increased acetate and valerate concentrations, and slow-digestion protein increased branched-chain SCFA and valerate contents (p < 0.05). In conclusion, there were large variations in protein digestion and fiber fermentation speed among the different common feed ingredients. Dietary protein digestion and fiber fermentation speed would affect growth performance and diarrhea incidence in weaned pigs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。