BACKGROUND: Wenshenyang decoction (WSY) has been shown to have a considerable effect on restoring renal function and improving kidney Yang deficiency syndrome in patients with CKD. However, its mechanism remains unclear. AIMS: This study aimed to integrated metabolomics and network pharmacology analysis combined with in vitro experiments to reveal the mechanisms. MATERIALS AND METHODS: Patients were selected from a clinical trial. LC-MS (Liquid chromatography-mass spectrometry) was used to investigate the differential metabolites and pathways. Spearman correlation analysis was performed between differential metabolites and clinical phenotypes. "Drug-component-differential metabolite" network was constructed to predict the core components and hub genes, and validated by molecular docking. On this basis, the effects of core components of WSY on the viability of Human Kidney-2 cells (HK-2) induced by doxorubicin (DOX) was detected by CCK-8, and RT-qPCR (Reverse transcription quantitative polymerase chain reaction) was used to detect the mRNA expression level of hub genes and related targets. KEY FINDINGS: LC-MS detected 54 differential metabolites, of which 35 metabolites showed up regulated, and 19 decreased. Spearman analysis showed that the differential metabolites were correlated with the clinical phenotype. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed that WSY mainly affected linoleic acid metabolism, FcεRI signaling pathway, and unsaturated fatty acid biosynthesis. The "Drug-component-differential metabolite" network showed that the core components of WSY were quercetin, luteolin and kaempferol, and the hub genes were PTGS2, AKT1, MMP9, EGFR and MMP2. Molecular docking showed that they had good biological binding capacity. In vitro cell experiments further showed that quercetin, luteolin and kaempferol could significantly activate the cells and reduce the mRNA levels of PTGS2, AKT1, MMP9, EGFR, MMP2, and ANGPTL4, and increase the level of FGFR1, SIRT3 and the glucocorticoid receptor (GR). SIGNIFICANCE: WSY has multi-component and multi-target properties in the treatment of CKD kidney Yang deficiency syndrome, and its mechanism may be related to anti-inflammatory and anti-fibrotic effects. This study provides a methodological reference for the treatment of CKD.
Integrated metabolomics and network pharmacology analysis to reveal the mechanisms of Wenshenyang decoction in the treatment of chronic kidney disease.
整合代谢组学和网络药理学分析,揭示温肾阳汤治疗慢性肾脏病的机制
阅读:3
作者:Jin Ge, Zhao Zongjiang
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 30; 16:1500463 |
| doi: | 10.3389/fphar.2025.1500463 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
