Methamphetamine and Methamphetamine-Induced Neuronal Exosomes Modulate the Activity of Rab7a via PTEN to Exert an Influence on the Disordered Autophagic Flux Induced in Neurons.

甲基苯丙胺和甲基苯丙胺诱导的神经元外泌体通过 PTEN 调节 Rab7a 的活性,从而对神经元中诱导的自噬通量紊乱产生影响

阅读:5
作者:Qiu Hai, Zhang Manting, Li Minchun, Chen Chuanxiang, Wang Huijun, Yue Xia
Autophagy is a critical mechanism by which methamphetamine (METH) induces neuronal damage and neurotoxicity. Prolonged METH exposure can result in the accumulation of autophagosomes within cells. The autophagy process encompasses several essential vesicle-related biological steps, collectively referred to as the autophagic flux. However, the precise mechanisms by which METH modulates the autophagic flux and the underlying pathways remain to be elucidated. In this study, we utilized a chronic METH exposure mouse model and cell model to demonstrate that METH treatment leads to an increase in p62 and LC3B-II and the accumulation of autophagosomes in striatal neurons and SH-SY5Y cells. To assess autophagic flux, this study utilized autophagy inhibitors and inducers. The results demonstrated that the lysosomal inhibitor chloroquine exacerbated autophagosome accumulation; however, blocking autophagosome formation with 3-methyladenine did not prevent METH-induced autophagosome accumulation. Compared to the autophagy activator rapamycin, METH significantly reduced autophagosome-lysosome fusion, leading to autophagosome accumulation. Rab7a is a critical regulator of autophagosome-lysosome fusion. Although Rab7a expression was upregulated in SH-SY5Y cells and brain tissues after METH treatment, immunoprecipitation experiments revealed weakened interactions between Rab7a and the lysosomal protein RILP. Overexpression of active Rab7a (Rab7a Q67L) significantly alleviated the METH-induced upregulation of LC3-II and p62. PTEN, a key regulator of Rab7a dephosphorylation, was downregulated following METH treatment, resulting in decreased Rab7a dephosphorylation and reduced Rab7a activity, thereby contributing to autophagosome accumulation. We further investigated the role of neuronal exosomes in the autophagy process. Our results demonstrated that the miRNA expression profiles in exosomes released by METH-induced SH-SY5Y cells were significantly altered, with 122 miRNAs upregulated and 151 miRNAs downregulated. KEGG and GO enrichment analyses of these differentially expressed miRNAs and their target genes revealed significant associations with the autophagy pathway and potential regulation of PTEN expression. Our experiments confirmed that METH-induced exosomes reduced PTEN expression levels and decreased Rab7a dephosphorylation, thereby exacerbating autophagic flux impairment and autophagosome accumulation. In conclusion, our study indicated that METH and its induced neuronal exosomes downregulate PTEN expression, leading to reduced Rab7a dephosphorylation. This, in turn, hinders the fusion of autophagosomes and lysosomes, ultimately resulting in autophagic flux impairment and neuronal damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。