Mitochondrial DNA (mtDNA) methylation may be associated with mitochondrial damage; this study investigates their relationship in contrast-induced renal tubular epithelial cell (RTEC) injury. We stimulated HK-2 cells with iohexol to establish an in vitro model and analyzed the methylation level of mtDNA by bisulfite amplicon sequencing. The mitochondrial membrane potential, mitochondrial reactive oxygen species (mtROS), intracellular ROS, and changes in mitochondrial ultrastructure were evaluated as indicators of mitochondrial damage. Iohexol significantly inhibited cell viability and induced cell apoptosis, increasing both mtROS and intracellular ROS levels. Additionally, the methylation levels of mtDNA-encoded genes cytochrome c oxidase subunit I (COX I) (3.09%, *pâ<â0.05), cytochrome c oxidase subunit II (COX II) (4.51%, **pâ<â0.01), cytochrome c oxidase subunit III (COX III) (3.50%, **pâ<â0.01) and cytochrome B (CYTB)(4.66%, *pâ<â0.05) were increased, accompanied by enhanced transcription of both COX I and COX III. 5-Aza-dC, as a DNA methylation inhibitor, was dissolved in dimethyl sulfoxide (DMSO) vehicle to explore the role and mechanism of inhibiting mtDNA methylation in contrast-induced RTEC injury. HK-2 cells were further divided into four groups: vehicle control (DMSO alone), vehicle pretreated contrast - induced group (CI) (DMSO-CI), inhibitor control (5-Aza-dC), and inhibitor pretreated CI (5-Aza-dC-CI). Intriguingly, administration of 5-Aza-dC effectively attenuated mtDNA methylation, leading to improvements in these parameters and restoration of cell viability while reducing apoptosis. In conclusion, mtDNA methylation is involved in the mechanism of contrast-induced RTEC injury, potentially mediated by over-transcription of COX I and III, abnormal mtROS production, and subsequent mitochondrial damage and dysfunction. Inhibiting mtDNA methylation can provide protective effects against contrast - induced RTEC injury by reducing ROS (mtROS) production.
Mitochondrial DNA methylation is involved in contrast-induced renal tubular epithelial cell injury.
线粒体DNA甲基化与造影剂引起的肾小管上皮细胞损伤有关
阅读:7
作者:Lv Meiling, Zhang Manyu, Chen Sha, Lu Sheng, Yang Dingwei
| 期刊: | Renal Failure | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Dec;47(1):2532112 |
| doi: | 10.1080/0886022X.2025.2532112 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肾损伤 | 信号通路: | DNA甲基化 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
