ACSS2-TFEB axis acts as a critical regulator of the autophagic machinery in head and neck squamous cell carcinoma.

ACSS2-TFEB 轴是头颈部鳞状细胞癌自噬机制的关键调节因子

阅读:5
作者:Yin Danhui, Yang Qian, Li Shisheng, Peng Yongchun, Zhang Jianbo, Xie Zuozhong, Fan Tengfei
Head and neck squamous cell carcinoma (HNSCC) has a high rate of metastasis and recurrence, and poses a considerable threat to patient survival. Autophagy, an intracellular degradation pathway, plays a crucial role in tumor progression; however, the underlying mechanisms of action remain unclear. This study aimed to explore the role of the ACSS2-TFEB axis in the regulation of autophagy and its impact on HNSCC cell proliferation, migration, invasion, and lysosomal function. HNSCC tumor tissues and cell lines were analyzed for ACSS2 protein expression. The effects of the ACSS2 knockdown on cell proliferation, migration, invasion, and autophagic flux were also assessed. The interaction between ACSS2 and transcription factor EB (TFEB) and its influence on lysosomal function were also examined. In this study, we found that ACSS2 protein expression was significantly upregulated and correlated with metastasis and poor prognosis. ACSS2 knockdown inhibited the proliferation, migration, and invasion of HNSCC cells, and disrupted autophagy flux, primarily by impairing lysosomal function. Additionally, ACSS2 was found to sustain autophagic flux through TFEB activation, a key regulator of the autophagy-lysosome pathway. TFEB activation promotes lysosomal function and autophagic flux, thereby facilitating tumor cell growth and metastasis. This study elucidated the molecular mechanism by which ACSS2 enhances HNSCC cell proliferation and invasion via TFEB activation. The ACSS2-TFEB axis is a potential therapeutic target for HNSCC and provides a foundation for the development of targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。