Radiotherapy plays a critical role in treating esophageal cancer, but individual responses vary significantly, impacting patient outcomes. This study integrates machine learning-driven multimodal radiomics and transcriptomics to develop predictive models for radiotherapy sensitivity and prognosis in esophageal cancer. We applied the SEResNet101 deep learning model to imaging and transcriptomic data from the UCSC Xena and TCGA databases, identifying prognosis-associated genes such as STUB1, PEX12, and HEXIM2. Using Lasso regression and Cox analysis, we constructed a prognostic risk model that accurately stratifies patients based on survival probability. Notably, STUB1, an E3 ubiquitin ligase, enhances radiotherapy sensitivity by promoting the ubiquitination and degradation of SRC, a key oncogenic protein. In vitro and in vivo experiments confirmed that STUB1 overexpression or SRC silencing significantly improves radiotherapy response in esophageal cancer models. These findings highlight the predictive power of multimodal data integration for individualized radiotherapy planning and underscore STUB1 as a promising therapeutic target for enhancing radiotherapy efficacy in esophageal cancer.
Machine learning-based multimodal radiomics and transcriptomics models for predicting radiotherapy sensitivity and prognosis in esophageal cancer.
基于机器学习的多模态放射组学和转录组学模型预测食管癌放射治疗敏感性和预后
阅读:4
作者:Ye Chengyu, Zhang Hao, Chi Zhou, Xu Zhina, Cai Yujie, Xu Yajing, Tong Xiangmin
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jul;301(7):110242 |
| doi: | 10.1016/j.jbc.2025.110242 | 研究方向: | 肿瘤 |
| 疾病类型: | 食管癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
