Mechanical force-induced oncostatin M secretion by Jun-positive neutrophils promotes craniofacial bone regeneration for midface hypoplasia treatment

机械力诱导Jun阳性中性粒细胞分泌抑癌素M,促进颅面骨再生,用于治疗中面部发育不全。

阅读:2
作者:Zhixuan Sun # ,Yujie Chen # ,Pengbing Ding ,Zheng Wang ,Zhiyu Lin ,Binyi Zhou ,Fengyi Hu ,Enhang Lu ,Haibo Xiang ,Xin Yang ,Peiyang Zhang ,Zhenmin Zhao
BACKGROUND: Midfacial hypoplasia is a common craniofacial deformity. Trans-sutural distraction osteogenesis (TSDO), which applies mechanical force to stimulate bone formation at the zygomaticomaxillary sutures (ZMS), has emerged as an effective therapeutic strategy. However, the underlying mechanisms of TSDO-induced osteogenesis remain unclear, resulting in prolonged treatment durations and limited clinical application. METHODS: A TSDO model was established in 4-week-old C57BL/6 mice and neutrophil-depleted mice to investigate the role of neutrophils in bone regeneration at the ZMS. Single-cell RNA sequencing was used to characterize neutrophil dynamics and heterogeneity during TSDO, and intercellular signaling pathways were identified through CellChat analysis. Additionally, in vitro stretching experiments using differentiated HL-60 cells were performed to assess the mechanosensitive behavior of neutrophils. RESULTS: In the TSDO model, mechanical distraction significantly increased neutrophil infiltration in the ZMS and surrounding bone marrow. Neutrophil depletion impaired distraction-induced bone formation. Single-cell sequencing revealed that the Jun(+) neutrophil subset (Jun-Neu) facilitated the osteogenic differentiation of suture-derived stem cells (SuSCs) via secretion of oncostatin M (OSM). In vitro, mechanical stretching (10%, 0.5 Hz) activated the phosphoinositide 3-kinase (PI3K)-AKT pathway in neutrophils, enhancing OSM release and promoting the osteogenic differentiation of SuSCs. CONCLUSIONS: This study identifies a mechanical force-neutrophil-bone regeneration axis in TSDO, highlighting the critical role of Jun-Neu-derived OSM in promoting osteogenesis. These findings provide theoretical insights for optimizing TSDO-based clinical strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。