Targeted soluble epoxide hydrolase inhibits M1 macrophage polarization to improve cartilage injury in temporomandibular joint osteoarthritis.

靶向可溶性环氧化物水解酶抑制 M1 巨噬细胞极化,从而改善颞下颌关节骨关节炎的软骨损伤

阅读:4
作者:Yan Bing, Li Yi, Liu Yiding, Zhang Yuying, Liu Sha, Wang Fu, Gao Lu
BACKGROUND: Macrophage immunomodulation has emerged as a novel intervention and therapeutic strategy for temporomandibular joint osteoarthritis (TMJOA), potentially serving as a key approach for reducing synovial inflammation and promoting cartilage repair. The soluble epoxide hydrolase inhibitor (sEHi), TPPU, has shown potential therapeutic effects against inflammatory diseases and osteogenesis by elevating endogenous Epoxyeicosatrienoic acids (EETs). However, it remains largely unknown whether TPPU can reduce inflammation and cartilage degradation in the TMJOA. METHODS: In vivo, the effects of TPPU on articular cartilage and synovial tissue pathology were assessed using H&E, Masson, Safranin-O/Fast Green staining and immunohistochemistry in a mouse model of TMJOA induced by unilateral anterior crossbite (UAC). RNA-seq and Western Blot was employed to investigate the key signal pathway of TPPU on M1 macrophage polarization. Subsequently, a co-culture system of macrophages and ATDC5 chondrocytes was established, and the influence of TPPU-treated macrophages on chondrogenesis was evaluated through Alcian Blue staining and RT-qPCR. RESULTS: In vivo, we observed that in UAC-induced TMJOA mice, TPPU significantly reduced the infiltration of inflammatory cells in the synovium and the positive expression of inflammatory factors TNF-α and IL-1β. It also mitigated the degradation of cartilage matrix and increased the positive expression of chondrogenic markers SOX9 and COL II. In vitro experiments revealed that TPPU inhibited the polarization of M1 macrophages, reduced inflammatory responses, and subsequently increased the expression of chondrogenic markers (SOX9 and COLII) in chondrocytes. RNA-seq data indicated that the NF-κB/IL-17 pathway as a putative target following TPPU treatment in macrophages. Further experiments confirmed that the addition of TPPU to macrophages inhibited the reduction in chondrogenesis induced by IL-17 and NF-κB agonists in the co-cultured cells. CONCLUSIONS: Our study elucidates a novel role of TPPU in inhibiting M1 macrophage polarization and modulating inflammatory immune responses via the EETs/NF-κB/IL-17 axis, thereby inhibiting cartilage damage in TMJOA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。