Mycobacterium bovis frd operon phase variation hijacks succinate signaling to drive immunometabolic rewiring and pathogenicity.

牛分枝杆菌frd操纵子相位变异劫持琥珀酸信号传导以驱动免疫代谢重编程和致病性

阅读:5
作者:Dong Yuhui, Ge Xin, Guo Qingbin, Ou Xichao, Liu Chunfa, Wang Yuanzhi, Liu Ziyi, Yue Ruichao, Fan Weixing, Zhao Yanlin, Zhou Xiangmei
Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC) pathogens, remains a global health threat. While bacterial genetic adaptations during host infection are poorly understood, phase variation in genomic homopolymeric tracts (HT) may drive pathogenicity evolution. Here, we demonstrate that M. bovis exploits HT insertion mutations in the fumarate reductase-encoding frd operon to subvert host immunometabolism. In macrophages, wild-type M. bovis secretes FRD-catalyzed succinate, stabilizing hypoxia-inducible factor-1α (HIF-1α) to drive glycolytic reprogramming and IL-1β production. This activates IL-1R-dependent Th1 immunity, restraining bacterial replication. Conversely, M. bovis frd HT insertion mutants impair succinate secretion, suppressing HIF-1α/IL-1β signaling and redirecting immunity toward pathogenic Th17 responses that promote neutrophil infiltration and tissue necrosis. Mice infection models reveal that M. bovis frd mutants exhibit enhanced pathogenicity, with higher pulmonary bacterial burdens. IL-1R blockade phenocopies frd HT insertion mutation effects, exacerbating lung pathology. Crucially, conserved frd HT polymorphisms in clinical M. tb isolates suggest shared immune evasion strategies across MTBC pathogens. Our work uncovers the bacterial gene phase variation mechanism of hijacking the succinate/HIF-1α/IL-1β axis to operate host immunity, providing a framework for targeting host metabolic checkpoints in TB therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。