Notch1 signaling regulates Sox9 and VEGFA expression and governs BMP2-induced endochondral ossification of mesenchymal stem cells.

Notch1 信号调节 Sox9 和 VEGFA 的表达,并控制 BMP2 诱导的间充质干细胞的软骨内成骨

阅读:10
作者:Zou Jing, Du Chengcheng, Liu Senrui, Zhao Piao, Gao Shengqiang, Chen Bowen, Wu Xiangdong, Huang Wei, Zhu Zhenglin, Liao Junyi
Although bone morphogenetic protein 2 (BMP2) can induce chondrogenic differentiation of mesenchymal stem cells (MSCs), its induction of endochondral ossification limits the application of BMP2-based cartilage regeneration. Here, we clarified the mechanisms of BMP2-induced endochondral ossification of MSCs. In vitro and in vivo chondrogenic, osteogenic, and angiogenic differentiation models of MSCs were constructed. The expression of target genes was identified at both protein and mRNA levels. RNA sequencing, molecular docking, co-immunoprecipitation, and chromatin immunoprecipitation followed by sequencing were applied to investigate the molecular mechanisms. We found that BMP2 up-regulated the expression of Notch receptors and ligands in MSCs. Notch1 signaling activation was related to inhibition of chondrogenic differentiation, promotion of osteogenic and angiogenic differentiation. In vivo ectopic stem cell implantation identified that Notch1 signaling activation blocked BMP2-induced chondrogenesis and facilitated endochondral ossification of MSCs. Mechanistically, we elucidated Notch1 intracellular domain (NICD1)-RBPjk complex binding to SRY-box transcription factor 9 (Sox9) and vascular endothelial growth factor A (VEGFA) promoters to decrease Sox9 expression and increase VEGFA expression. These findings suggest that Notch1 signaling can regulate BMP2-induced endochondral ossification by promoting RBPjk-mediated Sox9 inactivation and VEGFA expression. It is conceivable that targeting Notch1 signaling mediated endochondral ossification would benefit BMP2-based cartilage regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。