BACKGROUND: The intact tendon-bone interface (TBI) consists of four histological layers-tendon, fibrocartilage, calcified fibrocartilage, and bone-that gradually merge into each other, making complete structural restoration after injury challenging. Osteoporosis poses a significant risk for rotator cuff tears (RCTs) and re-tears after arthroscopic rotator cuff repair (ARCR). Activating Leptin receptor (Lepr) mediated Stat3 signaling transduction facilitates the transcription of Runx2 and Sox9, respectively, and promotes osteogenesis and chondrogenesis. MATERIALS AND METHODS: Sixty-five female Sprague Dawley rats were used. Animal models-ovariectomy (OVX) and rotator cuff tear and repair (RC)-were employed to simulate typical tendon-bone healing and TBI reconstruction under deficient bone-forming capability. And, grip strength, transcriptome, ELISA, histochemistry, and qPCR were performed to reveal the distinct functional recovery between RC and OVXâ+âRC rats, as well as pathophysiologic exhibition in the TBI at 2-week and 8-week. RESULTS: RC rats exhibited better functional recovery during the proliferative phase of TBI reconstruction, i.e., 2-week, compared to OVXâ+âRC rats, while both RC and OVXâ+âRC rats showed a lower grip strength in the upper limbs during the remodeling phase, i.e., 8-week. In RCTs, where adipogenesis was suppressed in RCT healing, the osteoblast-derived Leptin (Lep) and Angiopoietin like 4 (Angptl4), the Lepr ligands, facilitate osteogenesis and chondrogenesis, resulting in an obvious mineralized band in the reconstructed TBI and a transit cartilage band during the proliferative phase in RC rats. In osteoporosis-comorbid RCTs, where osteogenesis was suppressed while adipogenesis was activated, the adipocyte-derived Lep and Angptl4, particularly Angptl4, facilitated Stat3 phosphorylation and nucleus transfer, Sox9 transcription, and chondrogenesis, which was observed in OVXâ+âRC rats and led to excessive cartilage regeneration. CONCLUSIONS: This study demonstrated the role of Lep and Angptl4 in TBI reconstruction, via activating Lepr-mediated Stat3-Sox9 and Stat3-Runx2 signaling pathways, differentially regulating osteogenesis and chondrogenesis, and leading to the distinct clinical outcomes post-ARCR in RCTs and osteoporosis-comorbid RCTs. This study provides fundamental support for increasing Angptl4 in situ for chronogenesis in RCTs and lowering Angptl4 to Lep ratio for osteogenesis in RCTs with osteoporosis comorbidity.
Leptin receptor signaling mediates the distinct tendon-bone interface reconstruction in rotator cuff tears and osteoporosis-comorbid rotator cuff tears.
瘦素受体信号介导肩袖撕裂和骨质疏松合并肩袖撕裂中独特的肌腱-骨界面重建
阅读:5
作者:Zhu Dongxu, Zhu Xinrui, Zhang Yingze, Huang Xiaohong
| 期刊: | Stem Cell Research & Therapy | 影响因子: | 7.300 |
| 时间: | 2025 | 起止号: | 2025 Aug 22; 16(1):449 |
| doi: | 10.1186/s13287-025-04586-x | 研究方向: | 信号转导 |
| 疾病类型: | 骨质疏松 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
