Cell division cycle protein 42-driven activation of the MKK3/6-p38 signaling pathway participates in cardiac remodeling in mice.

细胞分裂周期蛋白 42 驱动的 MKK3/6-p38 信号通路的激活参与小鼠的心脏重塑

阅读:2
作者:Wen Ke, Xie Lin, Liu Quan-Wen, Yu Guan-Hui, Qiao Xu-Hui, Huang Yu-Chun, Wang Lu, Li Xin, Wen Li-Dan, Wang Xiao-Lei, He Jing, Xiao Xin-Yu, Zhao Xiao-Xiao, Wang Ling-Fang, Xin Hong-Bo, Deng Ke-Yu
Cell division cycle protein 42 (Cdc42) is a member of the Rho GTPase subfamily that serves as a signal mediating factor in cell cycle division, cytoskeleton arrangement, cell polarization, membrane trafficking and signal transduction. However, the role of Cdc42 in cardiac remodeling, including hypertrophy and fibrosis, remains controversial. This study aimed to clarify the role and underlying mechanism of Cdc42 in cardiac remodeling. Cardiac Cdc42 knockout (Cdc42(CKO)) mice were generated by crossing Cdc42(loxP/loxP) mice with MLC2v-Cre mice. Mouse cardiac remodeling models were induced by subcutaneous administration of AngII (1500 ng/kg/min) for 7 days or transverse aortic constriction (TAC) for 2 or 8 weeks. Our results showed that cardiac Cdc42 deletion significantly suppressed AngII- or TAC-induced cardiac hypertrophy and fibrosis and improved cardiac function in mice. Cdc42(CKO) or specific inhibition of Cdc42, markedly inhibited Ang II-mediated activation of the MKK3/6-p38 cascade in the heart and in isolated newborn/adult mouse cardiomyocytes or H9c2 cells. Furthermore, Cdc42 overexpression increased the surface area and hypertrophic gene expression in myocytes, whereas ML141 (a Cdc42 inhibitor) and SB203580 (a p38 inhibitor) specifically decreased p38 activation and hypertrophy in Cdc42-overexpressing or AngII-induced hypertrophic cardiomyocytes, indicating that p38 is a downstream effector of Cdc42 in cardiac hypertrophy. Taken together, our results demonstrated that Cdc42 is a key driver of cardiac remodeling via activation of the p38 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。