Hepatic lipid deposition is a key factor in progressing metabolic dysfunction-associated steatotic liver disease (MASLD). This study investigates the impact of the LIM domain and actin-binding protein 1 (LIMA1) on hepatic steatotic in MASLD and explore the underlying mechanisms. Increased levels of LIMA1 is observed in both serum and serum sEV of metabolic dysfunction-associated steatohepatitis (MASH) patients compared to healthy controls, with AUROC values of 0.76 and 0.86, respectively. Furthermore, increased LIMA1 O-GlcNAcylation is observed in mouse models of MASLD, and steatotic hepatocytes. Mechanistic studies revealed that steatosis upregulated Host cell factor 1 (HCF1) and O-GlcNAc transferase (OGT) expression, leading to catalyzed O-GlcNAcylation at the T662 site of LIMA1 and subsequent inhibition of its ubiquitin-dependent degradation. O-GlcNAcylation of LIMA1 enhances hepatocyte lipid deposition by activating β-catenin/FASn-associated signaling. Additionally, compared with their AAV8-TBG-LIMA1-WT counterparts, AAV8-TBG-LIMA1(ÎT662) injection exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis in HFD-fed and CDAHFD-fed LIMA1 HKO (hepatocyte-specific knockout) mice. Moreover, LTH-sEV-mediated delivery of LIMA1 promoted MASLD progression by promoting hepatic stellate cell (HSC) activation. The findings suggest that serum sEV LIMA1 may be a potential noninvasive biomarker and therapeutic target for individuals with MASH.
LIMA1 O-GlcNAcylation Promotes Hepatic Lipid Deposition through Inducing β-catenin-Regulated FASn Expression in Metabolic Dysfunction-Associated Steatotic Liver Disease.
LIMA1 O-GlcNAc糖基化通过诱导β-catenin调节的FASN表达促进代谢功能障碍相关脂肪肝疾病中的肝脏脂质沉积
阅读:6
作者:Yang Fuji, Chen Yifei, Zheng Guojun, Gu Kefeng, Fan Lin, Li Tingfen, Zhu Ling, Yan Yongmin
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2025 | 起止号: | 2025 Apr;12(15):e2415941 |
| doi: | 10.1002/advs.202415941 | 研究方向: | 代谢 |
| 疾病类型: | 脂肪肝 | 信号通路: | Wnt/β-Catenin |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
