The ovary is one of the first organs in humans to exhibit age-related functional impairments. As an organ composed of diverse heterogeneous cell types, the ovary exhibits cell-type-specific changes during the aging process, ultimately leading to a decline in female fertility. Investigating the molecular mechanisms of ovarian aging is crucial for understanding age-related fertility dysfunction in females. In this study, we combine scRNA-seq and scATAC-seq from mouse young/aged ovaries to characterize molecular features during ovarian aging. Using the single-cell multi-omic data, we revealed the cell-type-specific transcriptional changes during the aging process in seven major ovarian cell types and identified the cis/trans-regulatory elements governing these transcriptional changes. Specifically, we uncovered the transcriptional alterations of TGF-beta signaling in mesenchymal cells and endoplasmic reticulum stress in granulosa cells of aged mouse ovaries and further identified the potential corresponding cis/trans-regulatory elements. These molecular alterations may contribute to aging-induced functional impairments in mouse ovaries. In summary, this work provides transcriptome and chromatin accessibility landscape of ovarian aging in mice, which serve as a resource for identifying the cell-type-specific molecular mechanisms underlying ovarian aging, aiding in the identification of potential diagnostic biomarkers and treatment strategies.
A multi-omic single-cell landscape of the aging mouse ovary.
衰老小鼠卵巢的多组学单细胞图谱
阅读:4
作者:Zhang Jian, Jia Shunze, Zheng Zehua, Cao Lanrui, Zhou Jingyi, Fu Xudong
| 期刊: | Geroscience | 影响因子: | 5.400 |
| 时间: | 2025 | 起止号: | 2025 Jun;47(3):4485-4498 |
| doi: | 10.1007/s11357-025-01556-2 | 种属: | Mouse |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
