Morinda officinalis polysaccharide regulates rat bone mesenchymal stem cell osteogenic-adipogenic differentiation in osteoporosis by upregulating miR-21 and activating the PI3K/AKT pathway.

巴戟天多糖通过上调 miR-21 和激活 PI3K/AKT 通路来调节骨质疏松症大鼠骨髓间充质干细胞的成骨-成脂分化

阅读:5
作者:Wu Pei-Yu, Chen Wen, Huang He, Tang Wang, Liang Jie
Osteoporosis (OP) is a prevailing bone metabolic disease. Morinda officinalis polysaccharide (MOP) has biological activities and medicinal potential. This study explored its mechanism in OP. Rat bone mesenchymal stem cells (rBMSCs) were pretreated with low/high concentrations of MOP and subjected to osteogenic differentiation (OD) or adipogenic differentiation (AD) induction. The protein markers of OD (RUNX2 and BMP2) and AD (CEBPα and PPARγ) and miR-21 expression were detected. miR-21 was overexpressed to study its effects on rBMSC OD and AD. rBMSCs were transfected with miR-21 inhibitor and treated with high concentration of MOP for verification. The targeted relationship between miR-21 and PTEN was verified by bioinformatics and dual-luciferase assay. The PTEN/PI3K/AKT pathway-related proteins were detected. Ovariectomy (OVX)-induced OP rats were treated with MOP. Rat bone mineral density (BMD), serum bone metabolism indexes bone-derived alkaline phosphatase (BALP), and osteocalcin (BGP) levels were assessed by BMD detectors and ELISA kits. miR-21 expression in rBMSCs was detected. After treatment with low/high concentrations of MOP, the OD of rBMSCs was increased and AD was inhibited and miR-21 was upregulated. miR-21 overexpression enhanced the OD of rBMSCs and inhibited AD. miR-21 knockdown reversed the effect of high concentration of MOP on rBMSCs. miR-21 targeted PTEN. After treatment with low/high concentrations of MOP, PI3K, and AKT phosphorylation were increased and the PI3K/AKT pathway was activated. BMD, BALP, BGP, and miR-21 levels in OVX rats were decreased. MOP partially alleviated OP in OVX rats. Briefly, MOP enhanced rBMSC OD and inhibited AD via the miR-21/PTEN/PI3K/AKT axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。