To investigate the immunomodulatory activity of polysaccharides derived from the rhizome of Imperata cylindrica, polysaccharides (IRPs-H) were extracted using hot water extraction and further purified via DEAE-52 ion-exchange chromatography, yielding three fractions: IRPs-H1, IRPs-H2, and IRPs-H3. The structural features of these fractions were characterized by Fourier-transform infrared spectroscopy (FT-IR), high-performance gel permeation chromatography (HPGPC), atomic force microscopy (AFM), and thermogravimetric analysis (TGA). Their immunological activities were evaluated in vitro. All three fractions were identified as neutral pyranose-type polysaccharides, primarily composed of glucose and xylose, exhibiting good thermal stability and lacking long-chain structures. In vitro assays using RAW264.7 macrophages demonstrated that these polysaccharides promoted cell proliferation (50-800 μg/mL), enhanced phagocytic activity, and induced morphological changes characteristic of macrophage activation, including irregular shapes and pseudopod formation. ELISA and flow cytometry analyses revealed dose-dependent increases in nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and reactive oxygen species (ROS) levels. Notably, the IRPs-H3 fraction stimulated TNF-α and IL-6 production to levels of 438.02 ± 14.14 pg/mL and 30.13 ± 1.27 pg/mL, respectively, which were comparable to those induced by lipopolysaccharide (LPS), the positive control (460.83 ± 16.10 pg/mL and 31.87 ± 1.72 pg/mL, respectively). These results suggest that polysaccharides extracted from the rhizome of Imperata cylindrica possess significant immunostimulatory properties and hold potential for development as functional food ingredients or immune-enhancing agents.
The Chemical Profiling and Immunological Activity of Polysaccharides from the Rhizome of Imperata cylindrica Using Hot Water Extraction.
利用热水提取法对白茅根茎多糖进行化学成分分析和免疫活性研究
阅读:8
作者:Sun Meng-Ge, Chen Jia-Jie, Xu Jia-Min, Chen Wei, Chen Xiao-Bing, Yang Dong-Sheng
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 18; 30(12):2635 |
| doi: | 10.3390/molecules30122635 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
