Targeting NAMPT-OPA1 for treatment of senile osteoporosis

靶向NAMPT-OPA1治疗老年性骨质疏松症

阅读:1
作者:Chao-Wen Bai ,Bo Tian ,Ming-Chao Zhang ,Qin Qin ,Xin Shi ,Xi Yang ,Xiang Gao ,Xiao-Zhong Zhou ,Hua-Jian Shan ,Jin-Yu Bai

Abstract

Senescence of bone marrow mesenchymal stem cells (BMSCs) impairs their stemness and osteogenic differentiation, which is the principal cause of senile osteoporosis (SOP). Imbalances in nicotinamide phosphoribosyltransferase (NAMPT) homeostasis have been linked to aging and various diseases. Herein, reduction of NAMPT and impaired osteogenesis were observed in BMSCs from aged human and mouse. Knockdown of Nampt in BMSCs promotes lipogenic differentiation and increases age-related bone loss. Overexpression of Nampt ameliorates the senescence-associated (SA) phenotypes in BMSCs derived from aged mice, as well as promoting osteogenic potential. Mechanistically, NAMPT inhibits BMSCs senescence by facilitating OPA1 expression, which is essential for mitochondrial dynamics. The defect of NAMPT reduced mitochondrial membrane potential, interfered with mitochondrial fusion,and increased SA protein and phenotypes. More importantly, we have confirmed that P7C3, the NAMPT activator, is a novel strategy for reducing SOP bone loss. P7C3 treatment significantly prevents BMSCs senescence by improving mitochondrial function through the NAMPT-OPA1 signaling axis. Taken together, these results reveal that NAMPT is a regulator of BMSCs senescence and osteogenic differentiation. P7C3 is a novel molecule drug to prevent the pathological progression of SOP. Keywords: NAMPT; Optic atrophy protein 1; cellular senescence; mesenchymal stem cell; mitochondrial function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。