COP9 SIGNALOSOME SUBUNIT 5A facilitates POLYAMINE OXIDASE 5 degradation to regulate strawberry plant growth and fruit ripening.

COP9 信号体亚基 5A 促进多胺氧化酶 5 的降解,从而调节草莓植株的生长和果实的成熟

阅读:8
作者:Huang Yun, Gao Jiahui, Ji Guiming, Li Wenjing, Wang Jiaxue, Wang Qinghua, Shen Yuanyue, Guo Jiaxuan, Gao Fan
Polyamines (PAs), such as putrescine, spermidine, and spermine, are essential for plant growth and development. However, the post-translational regulation of PA metabolism remains unknown. Here, we report the COP9 SIGNALOSOME SUBUNIT 5A (FvCSN5A) mediates the degradation of the POLYAMINE OXIDASE 5 (FvPAO5), which catalyzes the conversion of spermidine/spermine to produce H2O2 in strawberry (Fragaria vesca). FvCSN5A is localized in the cytoplasm and nucleus, is ubiquitously expressed in strawberry plants, and is rapidly induced during fruit ripening. FvCSN5A RNA interference (RNAi) transgenic strawberry lines exhibit pleiotropic effects on plant development, fertility, and fruit ripening due to altered PA and H2O2 homeostasis, similar to FvPAO5 transgenic overexpression lines. Moreover, FvCSN5A interacts with FvPAO5 in vitro and in vivo, and the ubiquitination and degradation of FvPAO5 are impaired in FvCSN5A RNAi lines. Additionally, FvCSN5A interacts with cullin 1 (FvCUL1), a core component of the E3 ubiquitin-protein ligase complex. Transient genetic analysis in cultivated strawberry (Fragaria × ananassa) fruits showed that inhibiting FaPAO5 expression could partially rescue the ripening phenotype of FaCSN5A RNAi fruits. Taken together, our results suggest that the CSN5A-CUL1-PAO5 signaling pathway responsible for PA and H2O2 homeostasis is crucial for strawberry vegetative and reproductive growth in particular fruit ripening. Our findings present a promising strategy for improving crop yield and quality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。