O-GlcNAcylation of glutaminase isoform KGA inhibits ferroptosis through activation of glutaminolysis in hepatoblastoma.

谷氨酰胺酶同工酶KGA的O-GlcNAc糖基化通过激活肝母细胞瘤中的谷氨酰胺分解作用抑制铁死亡

阅读:2
作者:Fang Sijia, Zhu Guoqing, Xie Yi, Ding Miao, Zhen Ni, Zhu Jiabei, Mao Siwei, Tang Xiaochen, Wu Han, Zhang Qi, Zhang Aijia, Ni Xin, Pan Qiuhui, Ma Ji
Hepatoblastoma (HB), the most common pediatric hepatic malignancy, exhibits an increasing incidence. Metabolism reprogramming represents a pivotal hallmark in the oncogenic transformation process, with glutamine emerging as a critical energy source for neoplastic cells, rivaling glucose. However, the mechanism by which glutamine is involved in the development of HB remains unclear. Our study identified glutamine metabolism as a crucial factor in the development of HB. The key enzyme of glutamine metabolism, kidney-type glutaminase (GLS1), is activated in HB and regulates cell proliferation. Mechanistically, the GLS1 subtype KGA, utilizing glutamate derived from glutaminolysis, enhances glutathione (GSH) synthesis, which in turn inhibits ferroptosis in HB cells. Importantly, the Thr563 residue of KGA undergoes O-GlcNAcylation, enhancing enzyme activity and stability, accelerating glutaminolysis, and promoting the proliferation of HB. This study demonstrated that enhanced glutaminolysis, driven by GLS1, is crucial for the development of HB by inhibiting ferroptosis. The O-GlcNAcylation of KGA isoform ensures its stability and glutaminase function in HB cells, which can serve as a promising therapeutic target for KGA-mediated glutaminolysis in HB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。