Antigen fingerprint profiling of tumour-derived extracellular vesicles (TDEVs) in the body fluids is a promising strategy for identifying tumour biomarkers. In this study, proteomic and immunological assays reveal significantly higher CD155 levels in plasma extracellular vesicles (EVs) from patients with non-small cell lung cancer (NSCLC) than from healthy individuals. Utilizing CD155 as a bait protein on the EV membrane, CD155+ TDEVs are enriched from NSCLC patient plasma EVs. In the discovery cohort, 281 differentially expressed proteins are identified in TDEVs of the NSCLC group compared with the healthy control group. In the verification cohort, 49 candidate biomarkers are detected using targeted proteomic analysis. Of these, a biomarker panel of seven frequently and stably detected proteins-MVP, GYS1, SERPINA3, HECTD3, SERPING1, TPM4, and APOD-demonstrates good diagnostic performance, achieving an area under the curve (AUC) of 1.0 with 100% sensitivity and specificity in receiver operating characteristic (ROC) curve analysis, and 92.3% sensitivity and 88.9% specificity in confusion matrix analysis. Western blotting results confirm upregulation trends for MVP, GYS1, SERPINA3, HECTD3, SERPING1 and APOD, and TPM4 is downregulated in EVs of NSCLC patients compared with healthy individuals. These findings highlight the potential of this biomarker panel for the clinical diagnosis of NSCLC.
Identification of a Biomarker Panel in Extracellular Vesicles Derived From Non-Small Cell Lung Cancer (NSCLC) Through Proteomic Analysis and Machine Learning.
通过蛋白质组学分析和机器学习鉴定非小细胞肺癌(NSCLC)细胞外囊泡中的生物标志物组合
阅读:3
作者:Yuan Ye, Jiang Hai, Xue Rui, Feng Xiao-Jun, Liu Bi-Feng, Li Lian, Peng Bo, Ren Chen-Shuo, Li Shi-Min, Li Na, Li Min, Wang Dian-Bing, Zhang Xian-En
| 期刊: | Journal of Extracellular Vesicles | 影响因子: | 14.500 |
| 时间: | 2025 | 起止号: | 2025 May;14(5):e70078 |
| doi: | 10.1002/jev2.70078 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
