High Sugar Induced RCC2 Lactylation Drives Breast Cancer Tumorigenicity Through Upregulating MAD2L1.

高糖诱导的 RCC2 乳酸化通过上调 MAD2L1 驱动乳腺癌的肿瘤发生

阅读:3
作者:Zheng Bowen, Pan Yunhao, Qian Fengyuan, Liu Diya, Ye Danrong, Yu Bolin, Zhong Seng, Zheng Wenfang, Wang Xuehui, Zhou Baian, Wang Yuying, Fang Lin
Lactylation is a novel post-translational modification mediated by lactate, widely present in the lysine residues of both histone and non-histone proteins. However, the specific regulatory mechanisms and downstream target proteins remain unclear. Herein, it is demonstrated that the RCC2 protein may serve as a critical link between material metabolism and cell division, promoting the rapid proliferation of breast cancer under high glucose conditions. Mechanistically, the activation of glycolysis leads to an increase in lactate. Then, acyltransferase KAT2A mediates RCC2 lactylation at K124, which assists RCC2 in recruiting free SERBP1, thereby stabilizing MAD2L1 mRNA. The lactylation of RCC2 mediates the activation of the cellular MAD2L1 signaling pathway and contributes to the progression of breast cancer. A small molecule inhibitor slows down cell proliferation by binding to the RCC2 active pocket and specifically blocking RCC2 lactylation. The findings elucidate the mechanism behind the upregulation of MAD2L1 in murine tumors associated with a high-sugar diet as reported in prior study and suggest a novel therapeutic strategy of targeting RCC2 lactylation to restrict the rapid proliferation of breast cancer cell in a high-lactate microenvironment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。