Gastrodia protects HT22 cells from damage caused by oxygen glucose deprivation and reperfusion through inhibiting ferroptosis.

天麻通过抑制铁死亡来保护 HT22 细胞免受缺氧缺糖和再灌注造成的损害

阅读:4
作者:Zhou Dongyue, Huang Zhixuan, Liu Jian, Tan Jinlong, Li Hui, Ai Yangwen
Gastrodin (Gas) is a key active ingredients of Gastrodia elata Bl., with applications in treating cardiovascular and neurodegenerative conditions. However, the impact of Gas on neuronal damage caused by cerebral ischemia/reperfusion remains uncertain. A cell model of oxygen-glucose deprivation/reoxygenation (OGD/R) was established and the viability and apoptosis of HT22 cells were measured using the CCK-8 assay and TUNEL staining. Different kits detected the levels of LDH, Fe(2+) and MDA. The levels of ferroptosis-related genes and proteins were evaluated utilizing RT-qPCR and Western blotting. Following OGD/R, there was a decrease in HT22 cell viability and an increase in LDH level and apoptosis rate. Gas (25µM) increased cell viability, decreased LDH, Fe(2+), MDA and ACSL4 levels, up-regulated SLC7A11 and GPX4 and ameliorated OGD/R-induced apoptosis (P < 0.01). Ferroptosis inducer Erastin (Era, 10µM) successfully induced ferroptosis in HT22 cells, while Gas treatment attenuated the effect of Era. Era further promoted OGD/R-induced damage and ferroptosis in HT22 cells, whereas Gas inhibited the effect of Era. In conclusion, Gas might provide protection against induced HT22 cell injury caused by OGD/R through inhibiting ferroptosis, shows promising potential for clinical treatment of cerebral ischemia/reperfusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。