Identification of novel therapeutic targets in hepatitis-B virus-associated membranous nephropathy using scRNA-seq and machine learning.

利用单细胞RNA测序和机器学习技术鉴定乙型肝炎病毒相关膜性肾病的新治疗靶点

阅读:4
作者:Hu Yongzheng, An Qian, Yu Xinxin, Jiang Wei
Hepatitis B Virus-associated membranous nephropathy (HBV-MN) significantly impacts renal health, particularly in areas with high HBV prevalence. Understanding the molecular mechanisms underlying HBV-MN is crucial for developing effective therapeutic strategies. This study aims to elucidate the roles of miR-223-3p and CRIM1 in HBV-MN using single-cell RNA sequencing (scRNA-seq) and machine learning. scRNA-seq analysis identified a distinct subcluster of podocytes linked to HBV-MN progression. miR-223-3p emerged as a critical regulatory molecule, with overexpression resulting in decreased CRIM1 expression. Dual-luciferase reporter assays confirmed miR-223-3p targeting CRIM1 at a conserved binding site. These findings were corroborated by machine learning models, which highlighted the significance of miR-223-3p and CRIM1 in disease pathology. miR-223-3p plays a pivotal role in modulating CRIM1 expression in HBV-MN, providing a potential therapeutic target. Integrating scRNA-seq with machine learning offers valuable insights into the molecular landscape of HBV-MN, paving the way for novel interventions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。