BACKGROUND: Mitochondria are central to plant growth, development, and stress resilience. Despite their importance, mitochondrial research in desiccation-tolerant mosses remains underexplored. To unravel the stress resistance mechanisms of the extremotolerant desert moss, establishing a method to isolate highly active and pure mitochondria is critical. This study pioneered the use of low-temperature immersion combined with differential centrifugation and discontinuous percoll density gradient centrifugation to isolate mitochondria from Syntrichia caninervis, a model desiccation-tolerant moss. The purity, structural integrity, and functional activity of the isolated mitochondria were systematically evaluated using western blot analysis, Janus Green B staining, JC-1 membrane potential assays, and electron transport chain (ETC) complex activity measurements. RESULTS: From 50 g of S. caninervis tissue, approximately 56.7 mg of mitochondria were isolated with high purity, effectively removing non-mitochondrial contaminants (e.g., chloroplasts and cytoplasmic debris). Functional assays and membrane potential analysis confirmed no significant damage to mitochondrial activity or structural integrity during the purification process. Notably, room temperature storage (25 °C) induced rapid functional decay, whereas cryogenic storage at -â20 °C maintainedââ¥â70% mitochondrial viability over 10 days, sufficient for downstream applications including proteomic profiling and bioenergetic studies. CONCLUSION: The optimized mitochondrial isolation protocol presented here is both time efficient and highly reproducible, yielding mitochondria of exceptional purity suitable for mechanistic studies in desiccation-tolerant mosses. The isolated mitochondria exhibit robust functional activity and structural integrity, providing a reliable platform for investigating stress resistance mechanisms in S. caninervis and other extremophytic species. By establishing a standardized workflow for mitochondrial isolation in desiccation-tolerant plants, this method addresses a critical technical gap and paves the way for advanced investigations into mitochondrial biology under extreme environmental conditions.
Establishment of a low-temperature immersion method for extracting high-activity and high-purity mitochondria from Syntrichia caninervis Mitt.
建立低温浸泡法从犬齿毛线虫中提取高活性、高纯度线粒体
阅读:6
作者:Huo Wenting, Lin Xiaohua, Gao Mengyu, Shi Xiang, Li Hongbin, Zhuo Lu
| 期刊: | Plant Methods | 影响因子: | 4.400 |
| 时间: | 2025 | 起止号: | 2025 Jul 26; 21(1):103 |
| doi: | 10.1186/s13007-025-01419-z | 种属: | Canine |
| 研究方向: | 其它 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
