Prepubertal Exposure to Tris(2-chloroethyl) Phosphate Disrupts Blood-Testis Barrier Integrity via Ferritinophagy-Mediated Ferroptosis.

青春期前接触磷酸三(2-氯乙基)酯会通过铁蛋白吞噬介导的铁死亡破坏血睾屏障的完整性

阅读:4
作者:Zhao Yonggang, Peng Mo, Liu Honglei, Zhang Xiaoyu, Fu Dan
Tris(2-chloroethyl) phosphate (TCEP) is a representative chlorinated organophosphate flame retardant (OPFR) that demonstrates greater persistence than other non-halogenated alkyl or aryl OPFRs. Although TCEP has been shown to accumulate significantly in the environment and contribute to testicular toxicity and spermatogenic dysfunction, the precise underlying factors and mechanisms of action remain unclear. Herein, male ICR mice were gavaged with corn oil, 50 mg/kg body weight (bw) TCEP, or 100 mg/kg bw TCEP from postnatal day (PND) 22 to PND 35. TCEP exposure resulted in the disruption of blood-testis barrier (BTB) integrity and in abnormal testicular development. Considering that Sertoli cells constitute the primary target of toxicants and that TCEP induces oxidative stress in the testis and other organs, we focused on ferroptosis in Sertoli cells. Our findings revealed a significant increase in ferroptosis in the testes and Sertoli cells following TCEP exposure, and we observed functional restoration of Sertoli cell junctions upon treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, ferritin heavy chain 1 (FTH1) was markedly reduced in TCEP-exposed testes and Sertoli cells. Since nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy is essential for the degradation of FTH1, we assessed ferritinophagic activity and found significant upregulation of NCOA4, ATG5, ATG7, and LC3B II/I in TCEP-exposed testes and Sertoli cells. These results strongly suggest that TCEP triggers Sertoli cell ferroptosis by activating ferritinophagy that leads to reduced expression of BTB-associated proteins, ultimately causing BTB disruption and testicular developmental toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。