Knockdown of Galectin-3 confers myocardial protection against ischemia-reperfusion injury, modulating oxidative stress, inflammatory response, and the peroxisome proliferator-activated receptor g signaling pathway

敲除半乳糖凝集素-3可保护心肌免受缺血再灌注损伤,其机制是通过调节氧化应激、炎症反应和过氧化物酶体增殖物激活受体γ信号通路。

阅读:1
作者:Duo Chen ,Jingyu Wen ,Wei Zang ,Xuehong Lin
OBJECTIVE: Ischemia-reperfusion (I-R) injury in the myocardium is a considerable challenge in cardiovascular medicine, posing a severe threat to life. Given that galectin-3 possibly regulates myocardial I-R damage, this study aims to investigate the detailed mechanisms underlying galectin-3's effects on myocardial I-R injury. MATERIAL AND METHODS: The expression levels of galectin-3 in vivo and in vitro myocardial I-R models were determined by Western blot and quantitative real-time polymerase chain reaction. The effects of galectin-3 on inflammatory factors and oxidative stress factors in myocardial I-R were measured with an enzyme-linked immunosorbent assay, and the extent of myocardial tissue damage was assessed using hematoxylin-eosin staining. The influence of galectin-3 on peroxisome proliferator-activated receptor g (PPARg) signaling pathway-related proteins in myocardial I-R was determined by Western blot. RESULTS: Myocardial I-R damage was associated with increased galectin-3 expression, and the blood levels of creatine kinase-myocardial band and creatine kinase were favorably correlated with the messenger RNA levels of galectin-3 in mice with cardiac I-R damage. The inhibition of galectin-3 alleviated oxidative stress and inflammatory response, and galectin-3 promoted reactive oxygen species production in myocardial I-R cells. Furthermore, the cardiac I-R damage mouse model exhibited decreased expression of proteins linked to the PPARg signaling pathway, but galectin-3 inhibition enhanced the expression of these proteins. CONCLUSION: Galectin-3 plays a crucial role in exacerbating myocardial I-R injury, and its up-regulation is associated with increased oxidative stress, inflammatory responses, and inhibition of the protective PPARg signaling pathway. The alleviation of these harmful effects by galectin-3 inhibition suggests that targeting galectin-3 is a potential therapeutic method for reducing myocardial I-R injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。