Near-Infrared Light-Controlled Dynamic Hydrogel for Modulating Mechanosensitive Ion Channels in 3-Dimensional Environment.

近红外光控制动态水凝胶在三维环境中调节机械敏感离子通道

阅读:7
作者:Liu Xiaoning, Zhang Zimeng, Cao Zhanshuo, Yuan Hongbo, Xing Chengfen
The extracellular matrix (ECM) creates a dynamic mechanical environment for cellular functions, continuously influencing cellular activities via the mechanotransduction pathway. Mechanosensitive ion channels, recently identified as key mechanotransducers, convert mechanical stimuli into electrical or chemical signals when they detect membrane deformation. This process facilitates extracellular Ca(2+) influx, cytoskeletal reorganization, and transcriptional regulation, all of which are essential for cellular physiological functions. In this study, we developed a fibrous hydrogel composite (PIC/OEG-NPs) with near-infrared (NIR) light-controlled dynamic mechanical properties to modulate mechanosensitive ion channels in cells, by using oligo-ethylene glycol (OEG)-assembled polyisocyanide (PIC) polymer and OEG-grafted conjugated polymer nanoparticles (OEG-NPs). PIC and OEG-NPs assemble into PIC/OEG-NPs composites through OEG-mediated hydrophobic interactions when heated. Under NIR stimulation, the PIC/OEG-NPs composites exhibit increased mechanical tension and form tighter fibrous networks due to their thermoresponsive behavior. These changes are reversible and allow for the dynamic regulation of mechanosensitive ion channels, including Piezo1 in transfected HEK-293T cells and the endogenous TRPV4 in human umbilical vein endothelial cells (HUVECs), by switching NIR on and off. Furthermore, this process enhances the angiogenic potential of HUVECs. In summary, we present a simple and effective platform for in situ modulation of mechanosensitive ion channels in 3 dimensions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。