Membranous nephropathy (MN) is a common glomerular disease characterized by podocyte injury. Although previous studies highlighted the leucine-rich repeat-containing 55/big potassium (LRRC55/BK) channel axis in Ang II-induced apoptosis, our study further investigates the upstream regulation by nuclear factor of activated T-cells 3 (NFATc3) and its role in extracellular matrix (ECM) remodeling. Using an Ang II-induced podocyte injury model, we found that NFATc3 overexpression promoted LRRC55 transcription, increased BK channel activity, and elevated intracellular calcium, thereby exacerbating podocyte apoptosis and impairing migration. RNA-seq and functional assays revealed significant upregulation of ECM-related genes, with enhanced fibronectin and collagen I deposition. Patch-clamp experiments confirmed BK channel activation was LRRC55-dependent. In vivo, NFATc3 knockdown attenuated renal injury, restored podocyte markers (nephrin, WT1, synaptopodin), and alleviated proteinuria and fibrosis, whereas LRRC55 overexpression or BK agonist NS1619 reversed these effects. These findings reveal that NFATc3 aggravates Ang II-induced podocyte injury through transcriptional regulation of LRRC55 and activation of the BK channel, contributing to ECM remodeling and glomerular dysfunction. Our results offer mechanistic insight into MN progression and suggest the NFATc3/LRRC55/BK axis as a potential therapeutic target.
Modulation of podocyte extracellular matrix remodeling in membranous nephropathy by the NFATc3/LRRC55/BK channel pathway.
NFATc3/LRRC55/BK通道通路对膜性肾病中足细胞细胞外基质重塑的调节
阅读:5
作者:Guo Yaling, Min Jingliang, Chang Baochao, Liu Lei, Zhang Jiqiang, Chen Weidong
| 期刊: | Journal of Cell Communication and Signaling | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 13; 19(2):e70022 |
| doi: | 10.1002/ccs3.70022 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
