3-HKA Promotes Vascular Remodeling After Stroke by Modulating the Activation of A1/A2 Reactive Astrocytes.

3-HKA 通过调节 A1/A2 反应性星形胶质细胞的激活来促进中风后的血管重塑

阅读:3
作者:Chen Jun-Min, Shi Guang, Yu Lu-Lu, Shan Wei, Sun Jing-Yu, Guo An-Chen, Wu Jian-Ping, Tang Tie-Shan, Zhang Xiang-Jian, Wang Qun
Ischemic stroke is the most common cerebrovascular disease and the leading cause of permanent disability worldwide. Recent studies have shown that stroke development and prognosis are closely related to abnormal tryptophan metabolism. Here, significant downregulation of 3-hydroxy-kynurenamine (3-HKA) in stroke patients and animal models is identified. Supplementation with 3-HKA improved long-term neurological recovery, reduced infarct volume, and increased ipsilateral cerebral blood flow after distal middle cerebral artery occlusion (MCAO). 3-HKA promoted angiogenesis, functional blood vessel formation, and blood-brain barrier (BBB) repair. Moreover, 3-HKA inhibited A1-like (neurotoxic) astrocyte activation but promoted A2-like (neuroprotective) astrocyte polarization. Proteomic analysis revealed that 3-HKA inhibited AIM2 inflammasome activation after stroke, and co-labeling studies indicated that AIM2 expression typically increased in astrocytes at 7 and 14 days after stroke. Consistently, in co-cultures of primary mouse brain microvascular endothelial cells and astrocytes, 3-HKA promoted angiogenesis after oxygen-glucose deprivation (OGD). AIM2 overexpression in astrocytes abrogated 3-HKA-driven vascular remodeling in vitro and in vivo, suggesting that 3-HKA may regulate astrocyte-mediated vascular remodeling by impeding AIM2 inflammasome activation. In conclusion, 3-HKA may promote post-stroke vascular remodeling by regulating A1/A2 astrocyte activation, thereby improving long-term neurological recovery, suggesting that supplementation with 3-HKA may be an efficient therapy for stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。