Tea polyphenol mediated CsMYB77 regulation of CsPOD44 to promote tea plant (Camellia sinensis) root drought resistance.

茶多酚介导 CsMYB77 对 CsPOD44 的调控,从而提高茶树(Camellia sinensis)根系的抗旱性

阅读:4
作者:Xu Rong, Shao Chenyu, Luo Yuqi, Zhou Biao, Zhu Qian, Qiu Shuqi, Liu Zhonghua, Liu Shuoqian, Shen Chengwen
Drought stress significantly alters the metabolic homeostasis of tea plants; however, few studies have examined the role of specific metabolites, particularly tea polyphenols, in drought resistance. This study reveals that the tea polyphenol content in drought-tolerant tea cultivars tends to increase under drought conditions. Notably, in environments characterized by staged and repeated drought, changes in tea polyphenol are significantly positively correlated with drought resistance. To investigate this further, we irrigated the roots with exogenous tea polyphenols before subjecting the plants to drought. Our findings indicated that the absorptive roots of the experimental group exhibited enhanced development, improved cellular integrity, and a significant increase in peroxidase activity. A comprehensive analysis of the transcriptome and metabolome revealed that tea polyphenols are closely associated with the phenylpropanoid metabolism pathway. Notably, CsMYB77 and CsPOD44 genes were identified as highly correlated with this pathway. Overexpression experiments in Arabidopsis thaliana demonstrated that CsMYB77 promotes the expression of phenylpropanoid pathway genes, thereby enhancing drought resistance. Conversely, antisense oligonucleotide silencing of CsMYB77 decreased drought resistance in tea plants. Additional experiments, including yeast one-hybrid assays, luciferase complementation imaging, dual-luciferase assays, and electrophoretic mobility shift assays, confirmed that CsMYB77 positively regulates the expression of CsPOD44. In summary, our findings indicate that the differences in drought tolerance among tea cultivars are closely linked to phenylpropanoid metabolism. Specifically, tea polyphenols may mediate the regulatory network involving CsMYB77 and CsPOD44, thereby enhancing stress resistance by promoting root development. This study offers new insights into the breeding of drought-resistant tea cultivars.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。