Therapeutic and continuative effects of human umbilical cord-derived mesenchymal stromal cells in food-allergic mice.

人脐带间充质干细胞对食物过敏小鼠的治疗和持续作用

阅读:3
作者:Zhao Yuan, Ding Yabing, Wang Zhaoyan, Wang Qian, Ye Dou, Luan Zuo
This study aimed to investigate the impact of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) on food allergy (FA) mice induced by ovalbumin. The percentage of regulatory T cells (Tregs) was assessed by administering hUC-MSCs intravenously to FA mouse models with oral challenges, allergic responses and levels of related allergic cytokines. The phenotypes of hUC-MSCs were analysed using flow cytometric analysis. Immunohistochemistry was used for histology observation. Real-time polymerase chain reaction (PCR) was used for gene expression. Jejunum tissue was analysed by transcriptome sequencing. Our results demonstrated that in the current FA model, hUC-MSC therapy significantly alleviated allergic responses and diarrhoea. Levels of immunoglobulin E (IgE), as well as cytokines, such as interleukin (IL)-6 and tumour necrosis factor-α associated with T helper 2 cells, were reduced. Conversely, transforming growth factor (TGF)-β levels increased with hUC-MSC therapy. In addition, enhanced TGF-β expression along with IL-10 messenger ribonucleic acid levels and an increased percentage of CD4(+)Foxp3(+) Tregs were observed. In long-term FA mice models, hUC-MSC therapy exhibited sustained effects in mitigating rectal temperature decrease and mortality rates while reducing the levels of IgE, IL-6 and proportion of IgE+ cells; it also elevated TGF-β levels. Furthermore, hUC-MSC therapy attenuated pathological injury in both current and long-term FA mouse models. Transcriptome sequencing showed that upregulated differentially expressed genes were mainly concentrated in neural activation-ligand interaction, the cyclic guanosine monophosphate-protein kinase G signalling pathway and the TGF-β signalling pathway. The hUC-MSC therapy holds promise for alleviating both immediate and persistent FA conditions; targeting TGF-β and IL-10 secreted by hUC-MSCs may be a potential approach for treating FA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。