Identifying T cell antigen at the atomic level with graph convolutional network.

利用图卷积网络在原子水平上识别T细胞抗原

阅读:4
作者:Que Jinhao, Xue Guangfu, Wang Tao, Jin Xiyun, Wang Zuxiang, Cai Yideng, Yang Wenyi, Luo Meng, Ding Qian, Zhang Jinwei, Wang Yilin, Yang Yuexin, Pang Fenglan, Hui Yi, Wei Zheng, Xiong Jun, Xu Shouping, Lin Yi, Sun Haoxiu, Wang Pingping, Xu Zhaochun, Jiang Qinghua
Precise identification of T cell antigens in silico is crucial for the development of cancer mRNA vaccines. However, current computational methods only utilize sequence-level rather than atomic level features to identify T cell antigens, which results in poor representation of those that activate immune responses. Here we propose deepAntigen, a graph convolutional network-based framework, to identify T cell antigens at the atomic level. deepAntigen achieves excellent performance both in the prediction of antigen-human leukocyte antigen (HLA) binding and antigen-T cell receptor (TCR) interactions, which can provide comprehensive guidance for identification of T cell antigens. The tumor neoantigens predicted by deepAntigen in lung, breast and pancreatic cancer patients are experimentally validated through ELISPOT assays, which detect successful activation of CD8(+) T cells to release IFN-γ. Overall, deepAntigen can accurately identify T cell antigens at the atomic level, which could accelerate the development of personalized neoantigen targeted immunotherapies for cancer patients.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。