Gestational Exposure to Black Phosphorus Nanoparticles Induces Placental Trophoblast Dysfunction by Triggering Reactive Oxygen Species-Regulated Mitophagy.

妊娠期接触黑磷纳米颗粒可通过触发活性氧调节的线粒体自噬诱导胎盘滋养层功能障碍

阅读:7
作者:Zhang Changqing, Xiao Li, Fang Zhenya, Li Shuxian, Fan Chao, You Ruolan, Wang Chunying, Li Anna, Wang Xietong, Zhang Meihua
As a type of two-dimensional nanomaterial, black phosphorus (BP) has attracted considerable interest for applications in various fields. Despite its advantages, including biodegradability and biocompatibility, recent studies have shown that BP exhibits cytotoxicity in different types of cells. However, no studies have investigated the effects of BP exposure during pregnancy. Herein, we first investigated the effect of gestational exposure to BP nanoparticles (BPNPs) in a mouse model. Our findings indicated that BPNPs exposure restricted fetal growth and hindered placental development. In HTR8/SVneo trophoblast cells, BPNPs inhibited cell proliferation, migration, and invasion and caused apoptosis in a dose-dependent manner. Furthermore, BPNPs induced intracellular reactive oxygen species (ROS) overproduction and extensive mitochondrial damage. We further demonstrated that BPNPs promoted mitophagy via the PINK1/Parkin signaling pathway. Parkin siRNA knockdown rescued BPNPs-induced trophoblast dysfunction, while ROS inhibition attenuated BPNPs-induced cytotoxicity by reducing mitochondrial damage. Finally, treatment with mdivi-1, a mitophagy inhibitor, mitigated mitochondrial membrane potential reduction, excessive mtROS production, and the resulting trophoblast dysfunction. In vivo model investigation indicated that the application of mdivi-1 ameliorated embryonic resorption and fetal growth by alleviating placental damage. In summary, gestational exposure to BPNPs impairs fetal growth by inducing placental trophoblast dysfunction through ROS-regulated, PINK1/Parkin-dependent mitophagy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。