This study explored the possible effect of transcription factor GTF2I on the differentiation of osteoclasts and its regulation on the miR-134-5p/MAT2A axis. RANKL-induced osteoclasts were measured for expressions of GTF2I, miR-134-5p, and MAT2A. The number and size of osteoclasts were assessed after TRAP staining. The expressions of osteoclast differentiation biomarkers, NFATC1, TRAP, and CTSK, were detected as well. The relationships of the GTF2I/miR-134-5p/MAT2A axis were verified by ChIP, dual luciferase, and RNA pull-down assay. In vivo experiments were conducted on ovariectomized (OVX)-treated mice to determine the effect of GTF2I overexpression on osteoclast differentiation and bone loss. RANKL-induced osteoclasts had suppressed expressions of GTF2I and miR-134-5p and increased expression of MAT2A. GTF2I overexpression or miR-134-5p overexpression contributed to decreased cell number and size and suppressed cell differentiation, whereas such an effect can be abolished by overexpression of MAT2A. GTF2I can bind the miR-134-5p promoter to regulate its expression, whereas miR-134-5p can negatively regulate MAT2A expression. The protective effect of GTF2I overexpression against bone loss and cell differentiation was verified by in vivo experiments. Collectively, these results indicate that GTF2I can mediate miR-134-5p expression to increase MAT2A expression, contributing to the suppression of osteoclast differentiation.
Transcription factor GTF2I regulates osteoclast differentiation through mediating miR-134-5p and MAT2A expressions.
转录因子 GTF2I 通过介导 miR-134-5p 和 MAT2A 的表达来调节破骨细胞分化
阅读:4
作者:Tang Lian, Liu Yanshi, Yan Jiyuan, Yuan Lin, Wang Zhaojun, Li Zhong
| 期刊: | Journal of Cell Communication and Signaling | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 19(2):e70010 |
| doi: | 10.1002/ccs3.70010 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
