Hyperactivation of MEK/ERK pathway by Ca2+ /calmodulin-dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin-dependent kinases and minichromosome maintenance protein in gastric cancer cells

Ca2+/钙调蛋白依赖性蛋白激酶激酶 2 过度激活 MEK/ERK 通路,通过激活胃癌细胞中的细胞周期蛋白依赖性激酶和微染色体维持蛋白促进细胞增殖

阅读:5
作者:Mohd A Najar, Anjana Aravind, Shobha Dagamajalu, David Sidransky, Hassan Ashktorab, Duane T Smoot, Harsha Gowda, T S Keshava Prasad, Prashant K Modi, Aditi Chatterjee

Abstract

Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。