INTRODUCTION: Growing evidence links gut microbiota (GM) to Alzheimer's disease (AD). Elevated lipopolysaccharide (LPS) levels, a Gram-negative bacteria component, are found in AD brains, but how LPS breaches the blood-brain barrier (BBB) remains unclear. Hypotheses suggest that bacteria-derived extracellular vesicles (bEVs) may transport LPS across the BBB. METHODS: bEVs were extracted from human and mouse feces and blood, and LPS levels were measured. In vivo imaging and immunofluorescence confirmed the transport of blood LPS-carrying bEVs across the BBB. The role of these bEVs in microglia was investigated both in vivo and in vitro. RESULTS: Elevated LPS-containing bEVs were detected in the plasma of AD patients compared to healthy individuals. These bEVs activated microglial Piezo1, consequently precipitating an excessive synaptic pruning process mediated by the C1q-C3 complement pathway. DISCUSSION: These findings illuminate the complex interplay between the gut microbiota, bEVs, neuroinflammation, and synaptic plasticity - a key early event in AD - offering insights for potential therapeutic interventions. HIGHLIGHTS: GM-derived bEVs can traverse the BBB. LPS was necessary for bEVs' penetration into the brain, and bEVs might be closely related to AD progression. bEVs mediated microglial activation and synaptic pruning via C1q-C3 complement pathway. Microglia Piezo1 was involved in bEV-induced excessive synaptic pruning.
Gut-derived bacterial vesicles carrying lipopolysaccharide promote microglia-mediated synaptic pruning.
肠道来源的细菌囊泡携带脂多糖,促进小胶质细胞介导的突触修剪
阅读:4
作者:Zhao Xiaoduo, Yu Jiayi, Xu Bin, Xu Zhi, Lei Xia, Han Shilong, Luo Shangfei, Zhang Can, Peng Guoping, Li Jing, Yu Jie, Ling Yi, Fan Zhongqin, Mo Wei, Yang Ying, Zhang Jing
| 期刊: | Alzheimers & Dementia | 影响因子: | 11.100 |
| 时间: | 2025 | 起止号: | 2025 Aug;21(8):e70331 |
| doi: | 10.1002/alz.70331 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
