Exercise maintains bone health and produces protective effects on bone loss. In this study, we investigated the potential protective effects of circulating small extracellular vesicles (sEVs) generated under endurance exercise training (Exe-sEVs) on ovariectomized (OVX)-induced bone loss. Inhibition of sEVs secretion by GW4869 partially reversed exercised-induced protection against OVX-induced bone loss. Importantly, Exe-sEVs was internalized by bone tissue and alleviated bone loss in OVX-mice. The increased levels of fibronectin type-III domain-containing protein 5 (FNDC5/irisin) in Exe-sEVs contributed to the promotion of osteogenesis in bone marrow mesenchymal stem cells (BM-MSCs). However, systemic knockdown of FNDC5, the precursor of irisin, abolished the exercise-induced protective effects against bone loss in OVX-mice. Moreover, incubation of irisin enhanced osteogenesis and attenuated adipogenesis in BM-MSCs. Intriguingly, implantation of BM-MSCs overexpressing FNDC5 accelerated osteogenesis and chondrogenesis in BALB/c immunodeficiency mice. Mechanistically, irisin promoted phosphorylation of p38MAPK and JNK, but not ERK. Blocking the JNK and p38MAPK signaling pathway with specific inhibitors abolished the pro-osteogenesis and anti-adipogenesis effects of irisin on BM-MSCs. However, inhibition of β-arrestin-2 rescued the irisin-induced activation of p38MAPK and JNK. Finally, aptamer-modified FNDC5-sEVs (Apt-FNDC5-sEVs) exhibited higher enrichment in bone tissues and enhanced bone formation. In conclusion, exercise-induced circulating FNDC5/irisin-enriched sEVs promote osteogenesis of mouse BM-MSCs both in vitro and in vivo, partially through a β-arrestin-2-dependent p38MAPK and JNK signaling pathway. Apt-FNDC5-sEVs represent a promising strategy for the treatment of osteoporosis.
FNDC5/irisin-enriched sEVs conjugated with bone-targeting aptamer alleviate osteoporosis: a potential alternative to exercise.
富含 FNDC5/irisin 的 sEV 与骨靶向适体结合可缓解骨质疏松症:一种潜在的运动替代方案
阅读:3
作者:Mao Min-Zhi, Zheng Ming-Hui, Guo Bei, Ling Ya-Li, Lin Xiao, Li Fu-Xing-Zi, Shan Su-Kang, Dai De-Xing, Qiu Lei, Cai Xue-Yang, Ding Ya, Gu Ying-Ying, Deng Qi-Rong, Zhou Zhi-Ang, Lei Li-Min, Tao Cheng, Cui Rong-Rong, Wu Feng, Zhang Fei, Wu Bo, Liao Le-Le, Tan Chang-Ming, Liao Xiao-Bo, Yuan Ling-Qing, Xu Feng
| 期刊: | Journal of Nanobiotechnology | 影响因子: | 12.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 12; 23(1):504 |
| doi: | 10.1186/s12951-025-03587-5 | 研究方向: | 骨科研究 |
| 疾病类型: | 骨质疏松 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
