The accumulation of α-synuclein within Lewy bodies is a critical factor in the pathogenesis of Parkinson's disease, with potential implications for axonal transport deficits. Activated asparagine endopeptidase enzymatically cleaves α-synuclein and tau, resulting in the formation of α-SynN103 and tauN368, which are markedly elevated in the brains with Parkinson's disease. In this study, rats received intrastriatal injections of 15âµg of preformed α-SynN103 and tauN368 fibrils, and their behaviors were evaluated after a 2-month period. Subsequent analyses investigated alterations in axonal transport and the underlying molecular mechanisms. Our findings indicated that preformed fibrils reduced kinesin levels and excessively activated the AMPK and p38 MAPK, thereby compromising the function of kinesin and dynein in axonal transport. Pharmacological inhibition of AMPK and p38 MAPK ameliorated these dysfunctions in rat models, which identified Compound C and SB203580 as potent inhibitors, offering evidence for early interventions of Parkinson's disease. Mechanisms by which PFFs caused axonal transport defects of dopamine neurons in PD-like models. (A) Shows normal axonal transport. (B) Demonstrates how PFFs increase ?-Syn accumulation, reducing PIKE expression and triggering AMPK/p38 MAPK over-activation, which lowers kinesin levels and motor-cargo interaction. (C) AMPK activity inhibition with C.C significantly improves these deficits. (D) The p38 inhibitor enhances kinesin transport by preventing p38 MAPK over-activation, reducing its inhibition of kinesin-cargo binding.
Disruption of axonal transport in Parkinson's disease: the role of pathological α-Syn and AMPK/p38 MAPK signaling.
帕金森病中轴突运输的破坏:病理性α-突触核蛋白和AMPK/p38 MAPK信号传导的作用
阅读:5
作者:Yang Xiaoman, Ma Zhuoran, Lian Piaopiao, Wu Yi, Liu Ke, Zhang Zhaoyuan, Tang Zhicheng, Xu Yan, Cao Xuebing
| 期刊: | Npj Parkinsons Disease | 影响因子: | 8.200 |
| 时间: | 2025 | 起止号: | 2025 May 6; 11(1):114 |
| doi: | 10.1038/s41531-025-00926-z | 研究方向: | 信号转导 |
| 疾病类型: | 帕金森 | 信号通路: | AMPK、p38 MAPK |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
