Xingxiao Pill Suppressed the Progression of Non-Small Cell Lung Cancer by Targeting SREBP1/FASN-Induced Fatty Acid Biosynthesis via PI3K/AKT/mTOR Signaling Pathway.

星霄丸通过PI3K/AKT/mTOR信号通路靶向SREBP1/FASN诱导的脂肪酸生物合成,抑制非小细胞肺癌的进展

阅读:15
作者:Zhou Xiangnan, Hu Xiuhua, Zhang Zhiying, Lin Shicheng, Lin Ximing, Zhou Tian, Bai Yanping, Hu Kaiwen
INTRODUCTION: Xingxiao Pill (XXP), a typical traditional Chinese medicine (TCM) prescription drug used to treat NSCLC in clinic. However, the mechanism underlying its regulatory effects remains unclear. This study aimed to evaluate the potential efficacy of XXP in treating NSCLC and to investigate how XXP regulates fatty acid biosynthesis in NSCLC. METHODS: A lung carcinoma mouse model was created by transplanting Lewis lung carcinoma (LLC) cells into male C57BL/6 mice. Lung cancer cell models using LLC and A549 cells were also constructed. XXP's therapeutic efficacy on NSCLC was assessed via oral gavage. Bioinformatics analysis and transcriptome sequencing identified XXP's potential targets and mechanisms. These findings were verified by in vitro cell assays, Western blotting, immunofluorescence staining, and Oil Red O staining. RESULTS: XXP inhibited lung tumor growth, suppressed cell proliferation and impeded cell migration. Additionally, it influenced the processes of apoptosis and cell cycle in both A549 and LLC cells. Bioinformatics analysis suggested that regulation of fatty acid biosynthesis and phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway were crucial mechanisms underlying the antitumor effects of XXP in lung cancer. XXP reduced the levels of the fatty acid biosynthesis products, such as total cholesterol (TC), triglycerides (TG), lipids, and free fatty acids in A549 cells, and downregulated the expression of sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FASN). Furthermore, XXP decreased the expression level of PI3K, AKT, mTOR, phospho-PI3K, and phospho-AKT. DISCUSSION: XXP exerts its inhibitory effect on lung cancer tumor growth by controlling the biosynthesis of fatty acids and the PI3K/AKT/mTOR signaling pathway. The research suggests that targeting this metabolic pathway could be a viable strategy for cancer therapy and emphasizes the value of TCM in providing a rich source of innovative pharmaceuticals for cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。