o8G-modified circPLCE1 inhibits lung cancer progression via chaperone-mediated autophagy.

o8G修饰的circPLCE1通过分子伴侣介导的自噬抑制肺癌进展

阅读:4
作者:Zhao Qingyun, Cai Dunyu, Xu Haotian, Gao Yihong, Zhang Ruirui, Zhou Xiaodong, Chen Xingcai, Chen Sixian, Wu Jiaxi, Peng Wenyi, Yuan Shengyi, Li Deqing, Li Gang, Nan Aruo
BACKGROUND: Lung cancer poses a serious threat to human health, but its molecular mechanisms remain unclear. Circular RNAs (circRNAs) are closely associated with tumour progression, and the important role of 8-oxoguanine (o8G) modification in regulating the fate of RNA has been gradually revealed. However, o8G modification of circRNAs has not been reported. We identified circPLCE1, which is significantly downregulated in lung cancer, and further investigated the o8G modification of circPLCE1 and the related mechanism in lung cancer progression. METHODS: We identified differentially expressed circRNAs by RNA high-throughput sequencing and then conducted methylated RNA immunoprecipitation (MeRIP), immunofluorescence (IF) analysis, crosslinking immunoprecipitation (CLIP) and actinomycin D (ActD) assays to explore circPLCE1 o8G modification. The biological functions of circPLCE1 in vivo and in vitro were clarified via establishing a circPLCE1 silencing/overexpression system. Tagged RNA affinity purification (TRAP), RNA Immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays, and pSIN-PAmCherry-KFERQ-NE reporter gene were used to elucidate the molecular mechanism by which circPLCE1 inhibits lung cancer progression. RESULTS: This study revealed that reactive oxygen species (ROS) can induce circPLCE1 o8G modification and that AUF1 can mediate a decrease in circPLCE1 stability. We found that circPLCE1 significantly inhibited lung cancer progression in vitro and in vivo and that its expression was associated with tumour stage and prognosis. The molecular mechanism was elucidated: circPLCE1 targets the HSC70 protein, increases its ubiquitination level, regulates ATG5-dependent macroautophagy via the chaperone-mediated autophagy (CMA) pathway, and ultimately inhibits lung cancer progression. CONCLUSION: o8G-modified circPLCE1 inhibits lung cancer progression through CMA to inhibit macroautophagy and alter cell fate. This study provides not only a new theoretical basis for elucidating the molecular mechanism of lung cancer progression but also potential targets for lung cancer treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。