PURPOSE: To examine the role and mechanism of thrombospondin-1 (TSP1) in the development of fibrosis in diabetes mellitus-induced erectile dysfunction (DMED). MATERIALS AND METHODS: DMED was induced by intraperitoneal streptozotocin injection. All rats were categorized into three groups: control group (n=8), DMED group (n=8) and DMED+Leu-Ser-Lys-Leu (LSKL) group (n=8). After eight weeks following the induction of diabetes mellitus, the DMED+LSKL group was subjected to intraperitoneal injections of LSKL twice weekly for four weeks. To measure intracavernous pressure (ICP), a 25-gauge needle connected to a PE tube containing heparin was inserted into the corpus cavernosum (CC). Additionally, a needle was inserted into the carotid artery to measure mean arterial pressure (MAP). Sirius red staining and Masson trichrome staining were utilized to assess CC fibrosis. Moreover, high glucose (HG)-induced CC smooth muscle cells (CCSMCs) and CC fibroblasts (CCFs) were treated with or without LSKL. Western blotting and immunofluorescence were utilized to assess the phosphorylation and expression of related proteins. RESULTS: Compared with those in the control group, the ratio of the maximum ICP to the MAP markedly decreased in the DMED group, as did the ratio of smooth muscle to collagen and the ratio of collagen I to collagen III. These ratios were greater in the DMED+LSKL group than in the DMED group. TSP1 was highly expressed in the CC of DMED rats. In vitro experiments indicated that TSP1 expression significantly increased in the medium of CCSMCs and CCFs cultured in HG media and that the TGF-β pathway was activated in CCSMCs. Collagen IV was overexpressed in CCSMCs, indicating severe fibrosis was severe. Adding LSKL or knocking TSP1 down can prevent the activation of TGF-β signaling, as well as the overexpression of collagen IV in CCSMCs promoted by TSP1 secreted from CCSMCs itself or CCFs. CONCLUSIONS: TSP1 expression is increased in the CC of DMED rats. HG-induced TSP1 secretion via autocrine signaling from CCSMCs and/or paracrine signaling from CCFs to accelerate penile fibrosis. LSKL, an antagonist of TSP1, could improve erectile dysfunction by inhibiting the TGF-β/SMAD pathway.
Blocking TSP1 Ameliorates Diabetes Mellitus-Induced Erectile Dysfunction by Inhibiting the TGF-β/SMAD Pathway.
阻断 TSP1 可抑制 TGF-β/SMAD 通路,从而改善糖尿病引起的勃起功能障碍
阅读:6
作者:Xia Mancheng, Yuan Yiming, Fang Dong, Tan Xiaohui, Zhao Fangzhou, Li Xinfei, Gao Pengchao, Zhou Zhuo, Nan Tiegui, Xin Zhongcheng, Li Xuesong, Guan Ruili
| 期刊: | World Journal of Mens Health | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Jul;43(3):580-594 |
| doi: | 10.5534/wjmh.240065 | 研究方向: | 代谢 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
