BACKGROUND: Spinal cord injury (SCI) exerts severe physical, social, and economic effects on individuals and the healthcare system. While much progress has been made in understanding the pathophysiology of SCI, the regulation of the ferroptosis master regulator, GPX4 (Glutathione Peroxidase 4), remains poorly understood. METHODS: In a rat T10 contusion SCI model, GPX4 expression was tracked with western blot and immunofluorescence. Ferroptosis was induced in primary neurons using the GPX4 inhibitor RSL3, and inflammatory cytokine release was measured. Conditioned media from these neurons was applied to microglia to assess activation. The GPX4 activator PKUMDL-LC-102 was administered to SCI rats, with functional recovery evaluated through behavioral tests, MRI, and motor-evoked potentials. RESULTS: We first reveal a temporal and spatial decrease of GPX4 levels in neurons after SCI. We then demonstrate that GPX4 inhibition leads to primary neuronal ferroptosis, triggering the secretion of pro-inflammatory cytokines that activate microglia. This study represents the initial in vivo investigation of GPX4-specific targeted activation, demonstrating its potential to promote functional recovery in contusive SCI by improving neuronal survival and reducing microgliosis. CONCLUSION: These findings highlight the significance of GPX4 as a key factor for neuroprotection in the spinal cord. We identified the pivotal role of GPX4 in SCI and realize the neuroprotection via specific GPX4 activation to improve functional recovery in vivo. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: These findings provide a novel avenue for therapeutic intervention to enhance functional recovery after SCI through GPX4 targeted activation.
GPX4 activator enhances neuroprotection and functional recovery in spinal cord injury.
GPX4 激活剂可增强脊髓损伤的神经保护和功能恢复
阅读:4
作者:Liu Xinjie, Pang Yilin, Fan Baoyou, Zhang Jiawei, Liu Shen, Deng Xiaobing, Li Yun, Liu Ying, Zhang Xu, Zhao Chenxi, Wang Xiaoyu, Wu Xudong, Lai Luhua, Feng Shiqing, Liu Wenpeng, Ning Guangzhi, Yao Xue
| 期刊: | Journal of Orthopaedic Translation | 影响因子: | 7.800 |
| 时间: | 2025 | 起止号: | 2025 May 7; 52:344-359 |
| doi: | 10.1016/j.jot.2025.03.013 | 研究方向: | 神经科学 |
| 疾病类型: | 脊髓损伤 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
