Host Specificity of Snodgrassella in Eastern and Western Honeybees and Its Effects on Naturally Occurring Deformed Wing Virus Titers.

Snodgrassella 在东方和西方蜜蜂中的宿主特异性及其对自然发生的畸形翅病毒滴度的影响

阅读:4
作者:Zhou Nihong, Yang Shangning, Wei Ruike, Hu Fuliang, Liu Dandan, Zheng Huoqing
Honeybee gut microbiota undergoes long-term adaptive evolution with the host, resulting in host-specific genomic and functional characteristics. However, the specific role of host-specialized strains in shaping host physiological functions remains understudied. This study investigates the host specificity of the core gut symbiont Snodgrassella in A. cerana and A. mellifera, exploring its effects on immune response and natural virus suppression through genomic analysis and colonization experiments. Genomic analysis revealed that strain from A. mellifera, exhibited a larger genome and greater gene content compared to strain from A. cerana. Competitive colonization experiments showed that although strains from different origins had similar colonization efficiency in the host, host-specific strain displayed a clear home-field advantage in the competitive colonization process. Moreover, Inoculation of A. mellifera with its native Snodgrassella strain significantly reduced Deformed Wing Virus (DWV) titers, whereas a non-native strain had no effect. In contrast, neither strain altered DWV or Sacbrood Virus (SBV) levels in A. cerana. Immune gene analysis revealed that only the native Snodgrassella strain upregulated defensin 2 in A. mellifera, while no significant changes occurred in A. cerana with either strain. These results suggest that Snodgrassella exhibits host specificity at the strain level, influencing both host immune response and virus suppression, with non-native strains showing reduced efficacy in these functional roles, especially in A. mellifera.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。